• Title/Summary/Keyword: Multiple thermal criteria

Search Result 7, Processing Time 0.019 seconds

Development of a Material Mixing Method for Topology Optimization of PCB Substrate (PCB판의 위상 최적화를 위한 재료혼합법의 개발)

  • Han, Seog-Young;Kim, Min-Sue;Hwang, Joon-Sung;Choi, Sang-Hyuk;Park, Jae-Yong;Lee, Byung-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • A material mixing method to obtain an optimal topology for a structure in a thermal environment was suggested. This method is based on Evolutionary Structural Optimization(ESO). The proposed material mixing method extends the ESO method to a mixing several materials for a structure in the multicriteria optimization of thermal flux and thermal stress. To do this, the multiobjective optimization technique was implemented. The overall efficiency of material usage was measured in terms of the combination of thermal stress levels and heat flux densities by using a combination strategy with weighting factors. Also, a smoothing scheme was implemented to suppress the checkerboard pattern in the procedure of topology optimization. It is concluded that ESO method with a smoothing scheme is effectively applied to topology optimization. Optimal topologies having multiple thermal criteria for a printed circuit board(PCB) substrate were presented to illustrate validity of the suggested material mixing method. It was found that the suggested method works very well for the multicriteria topology optimization.

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.

Potential Efficacy of Multiple-shot Long-pulsed 1,064-nm Nd:YAG in Nonablative Skin Rejuvenation: A Pilot Study

  • Kim, Young-Koo;Lee, Hae-Jin;Kim, Jihee
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.159-165
    • /
    • 2020
  • Background and Objectives The ultimate goal in current skin rejuvenation practice is to achieve a good result with minimal pain and downtime. Nonablative skin rejuvenation (NSR) is one technique. The efficacy of the long-pulsed 1064 nm Nd:YAG laser (LPNDY) has not been assessed in NSR. Materials and Methods Three target areas were selected (bilateral cheeks and glabellar region) in six volunteer subjects. A LPNDY with an integral skin temperature monitor delivered three stacked shots to each target area (1064 nm, 12 mm spot, 13 J/cm2, 1 Hz) without any skin cooling or anesthesia. The skin temperature was recorded before, during, and after each set of shots using the system monitor and in real-time using a high-sensitivity (±0.001℃) near-infrared video camera. The skin reaction was observed with the naked eye, and pain and discomfort were assessed by the subjects during and after treatment. Results The subjects reported a mild feeling of heat with no discomfort during or after the test treatments. Mild erythema was observed around the treatment areas, without noticeable edema. A series of three ascending skin temperature stepwise peaks, with a decrease in skin temperature towards the baseline after the third shot, was observed consistently. The mean temperatures for shots 1, 2, and 3 for the cheeks were 39.5℃, 42.0℃, and 44.4℃, respectively, and for the glabella, 40.8℃, 43.9℃, and 46.2℃, respectively. Similar ranges were indicated on the system integral temperature monitor. Conclusion A set of three stacked pulses with the LPNDY at a low fluence achieved ideal dermal temperatures to achieve some dermal remodeling but without any downtime or adverse events. The temperature data from the integral thermal sensor matched the video camera measurements with practical accuracy for skin rejuvenation requirements. These data suggest that LPNDY would satisfy the necessary criteria to achieve effective NSR, but further studies will be needed to assess the actual results in clinical practice.

Influence Analysis on the Number of Ruptured SG u-tubes During mSGTR in CANDU-6 Plants (중수로 증기발생기 다중 전열관 파단사고시 파단 전열관 수에 대한 영향 분석)

  • Seon Oh Yu;Kyung Won Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2022
  • An influence analysis on multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout is performed to compare the plant responses according to the number of ruptured u-tubes under the assumption of a total of 10 ruptured u-tubes. In all calculation cases, the transient behaviour of major thermal-hydraulic parameters, such as the discharge flow rate through the ruptured u-tubes, reactor header pressure, and void fraction in the fuel channels is found to be overall similar to that of the base case having a single SG with 10 u-tubes ruptured. Additionally, as the conditions of low-flow coolant with high void fraction in the broken loop continued, causing the degradation of decay heat removal, the peak cladding temperature (PCT) would be expected to exceed the limit criteria for ensuring nuclear fuel integrity. However, despite the same total number of ruptured u-tubes, because of the different connection configuration between the SG and pressurizer, a difference is foud in time between the pressurizer low-level signal and reactor header low-pressure signal, affecting the time to trip the reactor and to reach the PCT limit. The present study is expected to provide the technical basis for the accident management strategy for mSGTR transient conditions of CANDU-6 plants.

A Study on the Effect of Cold Application Using a Sponge Bath in Healthy Adults (냉요법 적용방법에 따른 냉요법 효과에 관한 연구-건강한 성인 여성에서 스폰지 목욕방법을 중심으로)

  • Chung, Hyun-Sook;Kang, Kyu-Sook;Hwang, Ae-Ran
    • The Korean Nurse
    • /
    • v.28 no.3
    • /
    • pp.68-82
    • /
    • 1989
  • This study was a quasi-experimental research study to test the characteristics of temperature regulation according to sponge bath methods of cold application. Thirteen volunteers were selected from among nursing college students according to an established criteria using a purposive sampling technique. Four different cold application methods were used: $\circled1$ tepid water sponge bath at $28^{\circ}C$, $\circled2$ 20% alcohol sponge bath at $28^{\circ}C$, $\circled3$ 40% alcohol sponge bath at $28^{\circ}C$ and $\circled4$ tepid water sponge bath at 28$^{\circ}$C plus an ice bag to the head. Changes in rectal temperature, mean skin temperature, mean body temperature, heat content change and thermal discomfort during the cold application were measured at 5 minute intervals over a 120 minute period. The data collection period was from Dec. 20, 1988 to Feb. 3, 1989. The data were analyzed using descriptive statistics, simple regression, ANOVA, Duncan's multiple range test and Pearson correlation coefficient using the SPSS-X Program. The results of the study are summarized as follows. Five general hypothesis were tested. Hypothesis 1 that "Change in heat content will be decreased for each cold application method according to the cold application time" was rejected. (tepid water sponge bath: after 10 minutes of cold application, 20% alcohol sponge bath: after 25 minutes of cold application: 40% alcohol sponge bath: after 45 minutes of cold application, tepid water sponge bath plus an ice bag to the head: after 80 minutes of cold application) Hypothesis 2 that "Thermal discomfort will be changed for each cold application method according to the cold application time" was rejected after 5minutes of cold application. Hypothesis 3 that "Change in heat content will differ among the cold application methods" was accepted except 0~5, 0~10, 0~65, 0~105 and 0~120 minute. This difference showed significance only between sponge bath methods and tepid water sponge bath plus an ice bag to the head. Hypothesis 4 that "Thermal discomfort will differ among the cold application methods" was accepted at 15, 20, 35, 45, 75, 80, 90, 95, 100, 105, 110, 115 and 120 minute of cold application time. This difference showed significance only between sponge bath methods and tepid water sponge bath plus an ice bag to the head. Hypothesis 5 that "The higher the change in heat content, the higher the thermal discomfort during the cold application time" was accepted for between 10~60 and 75 minute of cold application. In conclusion, this study showed that in sponge bath at $28^{\circ}C$, 10~80 minute was a effective cold application time in the view of heat loss through the skin. Concerning the effects of evaporation and thermal discomfort, it was found that there was no difference with regard to the solutions; tepid water sponge bath; 20% alcohol sponge bath or 40% alcohol sponge bath at a $28^{\circ}C$ controlled solution temperature. So it was thought that the type of solution itself did not have a big influence on the heat loss through skin. The combined effect of sponge bath with an ice bag to the head showed a significant difference and also showed a slight increase in thermal discomfort. On the basis of this research it can be concluded that cold application, for example, an ice bag to the head during a tepid water sponge bath is a good method as it increase heat loss through conduction, although fit can also cause a slight increase in thermal discomfort. The correlation between changes in heat content and thermal discomfort were not high. So factors other than change in heat content are considered to have an effect on the cognition of thermal discomfort.

  • PDF

Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems (하이브리드/전기 자동차 배터리 냉각 시스템의 냉각수 유동 특성이 냉각 성능에 미치는 영향에 대한 해석적 연구)

  • Oh, Hyunjong;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.179-185
    • /
    • 2014
  • Average temperature and temperature uniformity in a battery cell are the important criteria of the thermal management of the battery pack for hybrid electric vehicles and electric vehicles (HEVs and EVs) because high power with large size cell is used for the battery pack. Thus, liquid cooling system is generally applied for the HEV/EV battery pack. The liquid cooling system is made of multiple cooling plates with coolant flow paths. The cooling plates are inserted between the battery cells to reject the heat from batteries to coolant. In this study, the cooling plate with U-shaped coolant flow paths is considered to evaluate the effects of coolant flow condition on the cooling performance of the system. The counter flow and parallel flow set up is compared and the effect of flow rate is evaluated using CFD tool (FLUENT). The number of counter-flows and flow rate are changed and the effect on the cooling performance including average temperature, differential temperature, and standard deviation of temperature are investigated. The results show that the parallel flow has better cooling performance compared with counter flow and it is also found that the coolant flow rate should be chosen with the consideration of trade-off between the cooling performance and pressure drop.

A Study on the Optimum Design of Multiple Screw Type Dryer for Treatment of Sewage Sludge (하수슬러지 처리를 위한 다축 스크류 난류 접촉식 건조기의 최적 설계 연구)

  • Na, En-Soo;Shin, Sung-Soo;Shin, Mi-Soo;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.223-231
    • /
    • 2012
  • The purpose of this study is to investigate basically the mechanism of heat transfer by the resolution of complex fluid flow inside a sophisticated designed screw dryer for the treatment of sewage sludge by using numerical analysis and experimental study. By doing this, the result was quite helpful to obtain the design criteria for enhancing drying efficiency, thereby achieving the optimal design of a multiple screw type dryer for treating inorganic and organic sludge wastes. One notable design feature of the dryer was to bypass a certain of fraction of the hot combustion gases into the bottom of the screw cylinder, by the fluid flow induction, across the delicately designed holes on the screw surface to agitate internally the sticky sludges. This offers many benefits not only in the enhancement of thermal efficiency even for the high viscosity material but also greater flexibility in the application of system design and operation. However, one careful precaution was made in operation in that when distributing the hot flue gas over the lump of sludge for internal agitation not to make any pore blocking and to avoid too much pressure drop caused by inertial resistance across the lump of sludge. The optimal retention time for rotating the screw at 1 rpm in order to treat 200 kg/hr of sewage sludge was determined empirically about 100 minutes. The corresponding optimal heat source was found to be 150,000 kcal/hr. A series of numerical calculation is performed to resolve flow characteristics in order to assist in the system design as function of important system and operational variables. The numerical calculation is successfully evaluated against experimental temperature profile and flow field characteristics. In general, the calculation results are physically reasonable and consistent in parametric study. In further studies, more quantitative data analyses such as pressure drop across the type and loading of drying sludge will be made for the system evaluation in experiment and calculation.