• Title/Summary/Keyword: Multiple sound source

Search Result 84, Processing Time 0.022 seconds

Spatially Mapped GCC Function Analysis for Multiple Source and Source Localization Method (공간좌표로 사상된 GCC 함수의 다 음원에 대한 해석과 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.415-419
    • /
    • 2010
  • A variety of methods for sound source localization have been developed and applied to several applications such as noise detection system, surveillance system, teleconference system, robot auditory system and so on. In the previous work, we proposed the sound source localization using the spatially mapped GCC functions based on TDOA for robot auditory system. Performance of the proposed one for the noise effect and estimation resolution was verified with the real environmental experiment under the single source assumption. However, since multi-talker case is general in human-robot interaction, multiple source localization approaches are necessary. In this paper, the proposed localization method under the single source assumption is modified to be suitable for multiple source localization. When there are two sources which are correlated, the spatially mapped GCC function for localization has three peaks at the real source locations and imaginary source location. However if two sources are uncorrelated, that has only two peaks at the real source positions. Using these characteristics, we modify the proposed localization method for the multiple source cases. Experiments with human speeches in the real environment are carried out to evaluate the performance of the proposed method for multiple source localization. In the experiments, mean value of estimation error is about $1.4^{\circ}$ and percentage of multiple source localization is about 62% on average.

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.490-495
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency-domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, two sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array show the most accurate determination of multiple sources' positions.

  • PDF

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.

Fast 360° Sound Source Localization using Signal Energies and Partial Cross Correlation for TDOA Computation

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.157-167
    • /
    • 2017
  • This paper proposes a simple sound source localization (SSL) method based on signal energies comparison and partial cross correlation for TDOA computation. Many sound source localization methods include multiple TDOA computations in order to eliminate front-back confusion. Multiple TDOA computations however increase the methods' computation times which need to be as minimal as possible for real-time applications. Our aim in this paper is to achieve the same results of localization using fewer computations. Using three microphones, we first compare signal energies to predict which quadrant the sound source is in, and then we use partial cross correlation to estimate the TDOA value before computing the azimuth value. Also, we apply a threshold value to reinforce our prediction method. Our experimental results show that the proposed method has less computation time; spending approximately 30% less time than previous three microphone methods.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.

Real-time Orchestra Method using MIDI Files (MIDI파일을 이용한 실시간 합주 기법)

  • Lee, Ji-Hye;Kim, Svetlana;Yoon, Yong-Ik
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.91-97
    • /
    • 2010
  • Recently, Internet users have an interest about Social Media Service in Web2.0 environment. We suggest the orchestra service as social media service to meet user satisfactions in changed web environment. We accept a concept of the MMMD (Multiple Media Multiple Devices). In other words, Internet users listen to the music not only one device but multiple devices. Each one of multiple devices can play a sound source under earmark instruments for providing users with actual feeling like an orchestra. To meet the purpose, we define 3 steps. First, we separate the sound source based on instrument information. Second, we exact the suitable sound source for play orchestra. In final step, the sound source transmits to each suitable playing device. We named the 3 step for AET process. Beside we suggest synchronization method using rest point in the MIDI file for control sound sources. Using the AET process and synchronization method we provide the orchestra service for meet user's satisfactions to users.

Positional Estimation of Underwater Sound Source Using Nearfield Acoustic Holography (근접장 음향 홀로그래피에 의한 수중 음원의 위치 추정)

  • Yoon Jong-Rak;Kim Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.166-170
    • /
    • 2005
  • This paper describes the experimental study for the position estimation method of underwater sound source using the Nearfield Acoustic Holography. The result confirms that it can be used in the identification of underwater noise sources. The sound sources in the experimental work consists of 2 spherical projectors and the near-Held sound pressure is measured in the hologram plane. From the cross-power spectra of the measured data, the complex sound pressures on the hologram plane is derived and its spatial transformation gives sound fields in a source region. The obtained sound fields in a source region showed that the position of each sound source and their relative source strength are exactly estimated. In conclusion, this technique can be applied for estimation of each source position and its relative strength contribution for the underwater multiple sound sources.

QRAS-based Algorithm for Omnidirectional Sound Source Determination Without Blind Spots (사각영역이 없는 전방향 음원인식을 위한 QRAS 기반의 알고리즘)

  • Kim, Youngeon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.91-103
    • /
    • 2022
  • Determination of sound source characteristics such as: sound volume, direction and distance to the source is one of the important techniques for unmanned systems like autonomous vehicles, robot systems and AI speakers. There are multiple methods of determining the direction and distance to the sound source, e.g., using a radar, a rider, an ultrasonic wave and a RF signal with a sound. These methods require the transmission of signals and cannot accurately identify sound sources generated in the obstructed region due to obstacles. In this paper, we have implemented and evaluated a method of detecting and identifying the sound in the audible frequency band by a method of recognizing the volume, direction, and distance to the sound source that is generated in the periphery including the invisible region. A cross-shaped based sound source recognition algorithm, which is mainly used for identifying a sound source, can measure the volume and locate the direction of the sound source, but the method has a problem with "blind spots". In addition, a serious limitation for this type of algorithm is lack of capability to determine the distance to the sound source. In order to overcome the limitations of this existing method, we propose a QRAS-based algorithm that uses rectangular-shaped technology. This method can determine the volume, direction, and distance to the sound source, which is an improvement over the cross-shaped based algorithm. The QRAS-based algorithm for the OSSD uses 6 AITDs derived from four microphones which are deployed in a rectangular-shaped configuration. The QRAS-based algorithm can solve existing problems of the cross-shaped based algorithms like blind spots, and it can determine the distance to the sound source. Experiments have demonstrated that the proposed QRAS-based algorithm for OSSD can reliably determine sound volume along with direction and distance to the sound source, which avoiding blind spots.

Reduced Raytracing Approach for Handling Sound Map with Multiple Sound Sources, Wind Advection and Temperature

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.55-62
    • /
    • 2023
  • In this paper, we present a method that utilizes geometry-based sound generation techniques to efficiently handle multiple sound sources, wind turbulence, and temperature-dependent interactions. Recently, a method based on reduced raytracing has been proposed to update the sound position and efficiently calculate sound propagation and diffraction without recursive reflection/refraction of many rays, but this approach only considers the propagation characteristics of sound and does not consider the interaction of multiple sound sources, wind currents, and temperature. These limitations make it difficult to create sound scenes in a variety of virtual environments because they only generate static sounds. In this paper, we propose a method for efficiently constructing a sound map in a situation where multiple sounds are placed, and a method for efficiently controlling the movement of an agent through it. In addition, we propose a method for controlling sound propagation by considering wind currents and temperature. The method proposed in this paper can be utilized in various fields such as metaverse environment design and crowd simulation, as well as games that can improve content immersion based on sound.

Obstacle Avoidance of a Moving Sound Following Robot using Active Virtual Impedance (능동 가상 임피던스를 이용한 이동 음원 추종 로봇의 장애물 회피)

  • Han, Jong-Ho;Park, Sook-Hee;Noh, Kyung-Wook;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.200-210
    • /
    • 2014
  • An active virtual impedance algorithm is newly proposed to track a sound source and to avoid obstacles while a mobile robot is following the sound source. The tracking velocity of a mobile robot to the sound source is determined by virtual repulsive and attraction forces to avoid obstacles and to follow the sound source, respectively. Active virtual impedance is defined as a function of distances and relative velocities to the sound source and obstacles from the mobile robot, which is used to generate the tracking velocity of the mobile robot. Conventional virtual impedance methods have fixed coefficients for the relative distances and velocities. However, in this research the coefficients are dynamically adjusted to elaborate the obstacle avoidance performance in multiple obstacle environments. The relative distances and velocities are obtained using a microphone array consisting of three microphones in a row. The geometrical relationships of the microphones are utilized to estimate the relative position and orientation of the sound source against the mobile robot which carries the microphone array. Effectiveness of the proposed algorithm has been demonstrated by real experiments.