• Title/Summary/Keyword: Multiple resonance

Search Result 529, Processing Time 0.028 seconds

Experimental investigation of the whirl and generated forces of rotating cylinders in still water and in flow

  • Chen, Wei;Rheem, Chang-Kyu;Lin, Yongshui;Li, Ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.531-540
    • /
    • 2020
  • The whirl and generated forces of rotating cylinders with different diameters placed in still water and in flow are studied experimentally. For the rotating cylinders in still water, the Same Frequency Whirl (SFW) and Different Frequency Whirl (DFW) have been identified and illustrated. The corresponding SFW and DFW areas are divided. The Root Mean Square (RMS) values of the generated force coefficient dramatically increase in the defined ranges of Resonance I and Resonance II. For the rotating cylinders in flow, the hydrodynamics, SFW and DFW are illustrated. The hydrodynamic, SFW and DFW areas are divided. The RMS values of the generated forces in the range of Resonance II are much smaller than those in still water due to the generated lift forces. The discussion suggests that the frequency of the DFW may equal multiple times or one-multiple times that of the rotating frequency: the whirl direction of the DFW with multiple times the frequency of the rotating frequency is the same as the rotating direction. The whirl direction of the DFW with one-multiple times frequency of the rotating frequency is opposite to the rotating direction.

Validity of the Multiple Scale Solution for a Resonance Response of a Bar with a Nonlinear Boundary Condition (비선형 경계조건을 가진 봉의 공진응답을 위한 다중시간해의 타당성)

  • 이원경;여명환;배상수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.275-281
    • /
    • 1996
  • In order to examine the validity of an asymptotic solution obtained from the method of multiple scales, we investigate a third-order subharmonic resonance response of a bar constrained by a nonlinear spring to a harmonic excitation. The motion of the bar is governed by a linear partial differential equation with a nonlinear boundary condition. The nonlinear boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution.

  • PDF

Protein-ligand interaction investigated by HSQC titration study

  • Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.125-131
    • /
    • 2018
  • Chemical shift perturbation (CSP) is a simple NMR technique for studying binding of a protein to various ligands. CSP is the only technique that can directly provide both a value for the dissociation constant and a binding site from the same set of measurements. To accurately analyze the CSP data, the exact binding mode such as multiple binding, should be carefully considered. In this review, we analyzed systematically the CSP data with multiple modes. This analysis might provide insight into the mechanism on how proteins selectively recognize their target ligands to achieve the biological function.

Nonlinear vibrations of axially moving beams with multiple concentrated masses Part I: primary resonance

  • Sarigul, M.;Boyaci, H.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.149-163
    • /
    • 2010
  • Transverse vibrations of axially moving beams with multiple concentrated masses have been investigated. It is assumed that the beam is of Euler-Bernoulli type, and both ends of it have simply supports. Concentrated masses are equally distributed on the beam. This system is formulated mathematically and then sought to find out approximately solutions of the problem. Method of multiple scales has been used. It is assumed that axial velocity of the beam is harmonically varying around a mean-constant velocity. In case of primary resonance, an analytical solution is derived. Then, the effects of both magnitude and number of the concentrated masses on nonlinear vibrations are investigated numerically in detail.

A Rare Case of Diffuse Pachymeningeal Involvement of Multiple Myeloma

  • Yoon, Jehong;Kim, Eui Jong;Lee, Kyung Mi;Choi, Woo Suk;Park, Bong Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.252-255
    • /
    • 2015
  • Intracranial involvement in multiple myeloma patients takes up around 1%, and is usually known to be present in the parietal bone or skull base in cases of skull vault involvement, while it presents in the dura and parenchyma in cases of intracranial involvement. Primary pachymeningeal invasion is even rarer with extremely rapid progression and very poor prognosis. It is our intent to report a case in which we had to differentiate multiple myeloma with other metastatic tumors, lymphoma, and leukemia with intracranial involvement. Our patient showed an osteolytic lesion of the skull with dural involvement and subdural mass formations.

Characterization of Metakaolinite with Multiple Quantum MAS NMR

  • Han, Oc-Hee;Stefan Steuernagel
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • Metakaolinite produced by thermal transformation from kaolinite was studied by 27Al multiple quantum magic angel spinning (MQMAS) NMR technique in addition to 1-dimensional 27Al and 29Si MAS NMR. Our results confirm that 4-, 5-, 6- coordinated aluminum sites co-exit with some distribution of isotropic chemical shifts. This is consistent with amorphous character of metakaolinite observed with X-ray diffraction. In addition, characterization with MQMAS is briefly discussed in comparison with other NMR techniques to identify different aluminum sites especially when peaks are severely overlapped in 1-dimensional 27Al MAS NMR spectra.

  • PDF

Analyses of Two Different Versions of HETCOR Techniques for Solids

  • Kim, Se-Hun;Han, Doug-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.81-88
    • /
    • 2008
  • Solid HETCOR (Hetero-Correlation) requires homo-dipolar decoupling between proton spins during the evolution and the mixing period in 2D-NMR. There are two different ways of achieving it with pulse sequences. One is based on the multiple pulse (MP) sequence where thousands of intense radio frequency (rf) pulses are used to remove the homo-dipolar interaction between protons. The other is utilizing the so-called Lee-Goldburg (LG) off-resonance scheme where a continuous rf-irradiation is used. In this report, the advantage of one technique to the other, is analyzed. LG version is evaluated better in S/N and easier in setup procedure with the same experimental time.

Numerical Investigation on Surface Plasmon Resonance Sensor Design with High Sensitivity Using Single and Bimetallic Film Structures (고감도 단금속 및 쌍금속 표면 플라즈몬 공명 센서 설계를 위한 수치해석 연구)

  • Gwon, Hyuk-Rok;Lee, Seong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.795-800
    • /
    • 2009
  • Surface plasmon resonance (SPR) has been widely used for biological and chemical sensing applications. The present study investigates numerically the optical characteristics for the single Au film and bimetallic Ag/Au film SPR configurations by using the multiple beam interference matrix (MBIM) method. We use the prism coupling method, especially Kretschmann configuration for excitation of surface plasmon wave (SPW). The estimated results of reflectance, phase shift and magnetic field intensity enhancement factor are provided for finding out the optimum configuration with high sensitivity for SPR measurement. As a result, the optimum thicknesses are found to be 52 nm for a single Au film and 5 nm to 36 nm for bimetallic Ag-Au film. From the comparison of full width half maximum (FWHM) values for reflectance, phase shift, and enhancement of magnetic field intensity, it is concluded that the highest sensitivity can be obtained when using the phase shift for SPR sensor.

Optical Characteristics of Bimetallic Silver-Gold Film Structure in Surface Plasmon Resonance Sensor Applications (표면 플라즈몬 공명 센서에서의 쌍금속 은-금 박막 구조의 광학 특성)

  • Gwon, Hyuk-Rok;Lee, Seong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.156-160
    • /
    • 2007
  • Surface plasmon resonance(SPR) has been widely studied for biological and chemical sensing applications. The present study conducts numerical simulation for the single and bimetallic layer SPR configurations by using the multiple beam interference matrix(MBIM) method to investigate the influence of wave interference and complex refractive indices of materials on optical characteristics such as reflectance and optical phase shift which are used for sensing. First, calculated reflectances are compared with experimental data for validation. In addition, in the single film structures this study finds out the appropriate film thicknesses with minimum reflectance for cases of gold film and silver film. For a bimetallic silver-gold film structure, in particular, the bimetallic film thicknesses that has the minimum reflectance are found 36 nm for silver and 5 nm for gold. From the results, the use of phase shift would be useful compared to reflectance in determining the SPR configuration because the phase shift becomes more sensitive than reflectance.