• Title/Summary/Keyword: Multiple regression model

Search Result 2,523, Processing Time 0.031 seconds

Regionalized Regression Model for Monthly Streamflow in Korean Watersheds (韓國河川의 月 流出量 推定을 위한 地域化 回歸模型)

  • Kim, Tai-Cheol;Park, Sung-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.106-124
    • /
    • 1984
  • Monthly streanflow of watersheds is one of the most important elements for the planning, design, and management of water resources development projects, e.g., determination of storage requirement of reservoirs and control of release-water in lowflow rivers. Modeling of longterm runoff is theoretically based on water-balance analysis for a certain time interval. The effect of the casual factors of rainfall, evaporation, and soil-moisture storage on streamflow might be explained by multiple regression analysis. Using the basic concepts of water-balance and regression analysis, it was possible to develop a generalized model called the Regionalized Regression Model for Monthly Streamflow in Korean Watersheds. Based on model verification, it is felt that the model can be reliably applied to any proposed station in Korean watersheds to estimate monthly streamflow for the planning, design, and management of water resources development projects, especially those involving irrigation. Modeling processes and properties are summarized as follows; 1. From a simplified equation of water-balance on a watershed a regression model for monthly streamflow using the variables of rainfall, pan evaporation, and previous-month streamflow was formulated. 2. The hydrologic response of a watershed was represented lumpedly, qualitatively, and deductively using the regression coefficients of the water-balance regression model. 3. Regionalization was carried out to classify 33 watersheds on the basis of similarity through cluster analysis and resulted in 4 regional groups. 4. Prediction equations for the regional coefficients were derived from the stepwise regression analysis of watershed characteristics. It was also possible to explain geographic influences on streamflow through those prediction equations. 5. A model requiring the simple input of the data for rainfall, pan evaporation, and geographic factors was developed to estimate monthly streamflow at ungaged stations. The results of evaluating the performance of the model generally satisfactory.

  • PDF

Assessment of Ammunition Companies Using IDEA model (IDEA를 이용한 탄약중대의 효율성 평가)

  • Bae Yeong-Min;Kim Jae-Hui;Kim Seung-Gwon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1707-1714
    • /
    • 2006
  • In order to enhance sustainable war fighting capabilities, it is important to maintain a good ammunition support system. In this paper, we evaluate the performance of Ammunition companies using Imprecise Data Envelopment Analysis (IDEA)-BCC and IDEA-Additive model, which can deal with imprecise data in DEA. In order to select a list of input and output variables, we used a multiple regression analysis. We could choose input variables that have significant effects on the output performance with stepwise regression model. From the regression analysis, the number of soldiers, officers, and ammunition warehouses were selected as the input variables. Seven out of sixteen Ammunition companies were found to be inefficient by the IDEA-BCC model. And using IDEA-Additive model, we could identify the input excess and the output shortfall in reaching at a point on the efficiency frontier.

  • PDF

Estimation of Hard-to-Measure Measurements in Anthropometric Surveys

  • Choi, Jong-Hoo;Kim, Ryu-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.213-220
    • /
    • 2002
  • Anthropometric survey is important as a basis for human engineering fields. According to our experiences, there are difficulties in obtaining the measurements of some body parts because respondents are reluctant to expose. In order to overcome these difficulties, we propose a method for estimating such hard-to-measure measurements by using easy-to-measure measurements those are closely related to them. Multiple Regression Model, Feedforward Neural Network(FNN) Model and Projection Pursuit Regression(PPR) Model will be used as analytical tools for this purpose. The method we propose will be illustrated with real data from the 1992 Korea national anthropometric survey.

Least absolute deviation estimator based consistent model selection in regression

  • Shende, K.S.;Kashid, D.N.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.273-293
    • /
    • 2019
  • We consider the problem of model selection in multiple linear regression with outliers and non-normal error distributions. In this article, the robust model selection criterion is proposed based on the robust estimation method with the least absolute deviation (LAD). The proposed criterion is shown to be consistent. We suggest proposed criterion based algorithms that are suitable for a large number of predictors in the model. These algorithms select only relevant predictor variables with probability one for large sample sizes. An exhaustive simulation study shows that the criterion performs well. However, the proposed criterion is applied to a real data set to examine its applicability. The simulation results show the proficiency of algorithms in the presence of outliers, non-normal distribution, and multicollinearity.

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

Monitoring Seasonal Influenza Epidemics in Korea through Query Search (인터넷 검색어를 활용한 계절적 유행성 독감 발생 감지)

  • Kwon, Chi-Myung;Hwang, Sung-Won;Jung, Jae-Un
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.31-39
    • /
    • 2014
  • Seasonal influenza epidemics cause 3 to 5 millions severe illness and 250,000 to 500,000 deaths worldwide each year. To prepare better controls on severe influenza epidemics, many studies have been proposed to achieve near real-time surveillance of the spread of influenza. Korea CDC publishes clinical data of influenza epidemics on a weekly basis typically with a 1-2-week reporting lag. To provide faster detection of epidemics, recently approaches using unofficial data such as news reports, social media, and search queries are suggested. Collection of such data is cheap in cost and is realized in near real-time. This research aims to develop regression models for early detecting the outbreak of the seasonal influenza epidemics in Korea with keyword query information provided from the Naver (Korean representative portal site) trend services for PC and mobile device. We selected 20 key words likely to have strong correlations with influenza-like illness (ILI) based on literature review and proposed a logistic regression model and a multiple regression model to predict the outbreak of ILI. With respect of model fitness, the multiple regression model shows better results than logistic regression model. Also we find that a mobile-based regression model is better than PC-based regression model in estimating ILI percentages.

Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials

  • Zaabza, Hafedh Ben;Gara, Abderrahmen Ben;Rekik, Boulbaba
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.636-642
    • /
    • 2018
  • Objective: The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. Methods: A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. Results: All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from $0.78{\pm}0.01$ to $0.82{\pm}0.03$, between the first and second parities, from $0.73{\pm}0.03$ to $0.8{\pm}0.04$ between the first and third parities, and from $0.82{\pm}0.02$ to $0.84{\pm}0.04$ between the second and third parities. Conclusion: These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.

A Study on the Estimating Solar Radiation in Korea Using Cloud Cover and Hours of Bright Sunshine (국내 운량과 일조시간에 의한 태양광에너지 예측에 관한 연구)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • It is necessary to estimate the regression coefficients in order to predict the daily global radiation on a horizontal surface. Therefore many different equations have proposed to evaluate them for certain areas. In this work a new correlation has been made to predict the solar radiation for 16 different areas over Korea by estimating the regression coefficients taking into account cloud hours of bright sunshine. Particularly, the multiple linear regression model proposed shows reliable results for estimating the global radiation on a horizontal surface with monthly average deviation of-0.26 to +0.53% and each station annual average deviation of -1.61 to +1.7% from measured values.

Development of Korean Paddy Rice Yield Prediction Model (KRPM) using Meteorological Element and MODIS NDVI (기상요소와 MODIS NDVI를 이용한 한국형 논벼 생산량 예측모형 (KRPM)의 개발)

  • Na, Sang-Il;Park, Jong-Hwa;Park, Jin-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.141-148
    • /
    • 2012
  • Food policy is considered as the most basic and central issue for all countries, while making efforts to keep each country's food sovereignty and enhance food self-sufficiency. In the case of Korea where the staple food is rice, the rice yield prediction is regarded as a very important task to cope with unstable food supply at a national level. In this study, Korean paddy Rice yield Prediction Model (KRPM) developed to predict the paddy rice yield using meteorological element and MODIS NDVI. A multiple linear regression analysis was carried out by using the NDVI extracted from satellite image. Six meteorological elements include average temperature; maximum temperature; minimum temperature; rainfall; accumulated rainfall and duration of sunshine. Concerning the evaluation for the applicability of the KRPM, the accuracy assessment was carried out through correlation analysis between predicted and provided data by the National Statistical Office of paddy rice yield in 2011. The 2011 predicted yield of paddy rice by KRPM was 505 kg/10a at whole country level and 487 kg/10a by agroclimatic zones using stepwise regression while the predicted value by KOrea Statistical Information Service was 532 kg/10a. The characteristics of changes in paddy rice yield according to NDVI and other meteorological elements were well reflected by the KRPM.

Demand Forecasting for B2B Electronic Products : The Case of Personal Computer Market (B2B 전자제품 수요예측 모형 : PC시장 사례)

  • Moon, Jeongwoong;Chang, Namsik;Cho, Wooje
    • Journal of Information Technology Services
    • /
    • v.14 no.4
    • /
    • pp.185-197
    • /
    • 2015
  • As the uncertainty of demand in B2B electronics market has increased, firms need a strong method to estimate the market demand. An accurate prediction on the market demand is crucial for a firm not to overproduce or underproduce its goods, which would influence the performance of the firm. However, it is complicated to estimate the demand in a B2B market, particularly for the private sector, because firms are very diverse in terms of size, industry, and types of business. This study proposes both qualitative and quantitative demand forecasting approaches for B2B PC products. Four different measures for predicting PC products in B2B market with consideration of the different PC uses-personal work, common work, promotion, and welfare-are developed as the qualitative model's input variables. These measures are verified by survey data collected from experts in 139 firms, and can be applied when individual firms estimate the demand of PC goods in a B2B market. As the quantitative approach, the multiple regression model is proposed and it includes variables of region, type of industry, and size of the firm. The regression model can be applied when the aggregated demand for overall domestic PC market needs to be estimated.