• Title/Summary/Keyword: Multiple receiving antenna

Search Result 31, Processing Time 0.041 seconds

Performance Analysis of Multiple-Antenna Receiver in Cloud Transmission System for Building Single Frequency Networks (단일주파수방송망 구축을 위한 클라우드 전송 시스템에서의 다중 안테나 수신 성능 분석)

  • Gwak, Gye Seok;Kim, Jaekil;Ahn, Jae Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.474-480
    • /
    • 2014
  • In this paper, we propose a study for the next generation terrestrial broadcasting technology based on SFN(Single Frequency Networks), which applies multiple receiving antenna to improve receiving performance of cloud transmission system. By applying multiple receiving antenna, the received broadcast signals at the boundary of different SFN broadcasting area could be modelled by distributed MIMO system. Due to the interference cancellation effect of the MIMO detector, the proposed scheme could suppress the adjacent area interference more efficiently compared to the single receiving antenna case. Simulation results show that receiving performance can be improved dramatically in overlapping area of SFN by applying multiple antenna receivers in cloud transmission system.

Performance Comparison of Trellis Coded Multi-Carrier CDMA SYstem with Transmite/Rceive Antenna Diversity in Indoor Radio Channel (실내 무선 채널에서 송신/수신 안테나 다이버시티를 적용한 Trellis 부호화된 Multi-Carrier CDMA 시스템의 성능 비교)

  • 노재성;이찬주;김언곤;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1348-1356
    • /
    • 2000
  • In this paper, we proposed a trellis coded Multi-Carrier CDMA 16 QAM system with multiple transmit/receive antenna diversity technique, which is simple and suitable for indoor wireless communications. The proposed multiple transmit/receive antenna diversity technique is that the transmitter sends a trellis coded Multi-Carrier CDMA 16 QAM signal from multiple transmitting antennas with intentional time delays, which makes a receiver possible to distinguish and combine the signals from different antennas. In wireless indoor communication system, if we allow the increase of the complexity of the system, it is also possible to achieve additional diversity gain in the performance with the combination of the proposed technique and the conventional receiving antenna diversity. Furthermore, we have found that the proposed trellis coded Multi-Carrier CDMA 16 QAM system, which employs multiple transmit/receive antenna, is less sensitive to the multiple user interference and fading than conventional receiving antenna diversity systems.

  • PDF

Computational Complexity Analysis of Cascade AOA Estimation Algorithm Based on FMCCA Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.91-98
    • /
    • 2022
  • In the next generation wireless communication system, the beamforming technique based on a massive antenna is one of core technologies for transmitting and receiving huge amounts of data, efficiently and accurately. For highly performed and highly reliable beamforming, it is required to accurately estimate the Angle of Arrival (AOA) for the desired signal incident to an antenna. Employing the massive antenna with a large number of elements, although the accuracy of the AOA estimation is enhanced, its computational complexity is dramatically increased so much that real-time communication is difficult. In order to improve this problem, AOA estimation algorithms based on the massive antenna with the low computational complexity have been actively studied. In this paper, we compute and analyze the computational complexity of the cascade AOA estimation algorithm based on the Flexible Massive Concentric Circular Array (FMCCA). In addition, its computational complexity is compared to conventional AOA estimation techniques such as the Multiple Signal Classification (MUSIC) algorithm with the high resolution and the Only Beamspace MUSIC (OBM) algorithm.

A Study on Accurate Angle Estimation of Multiple Targets for Digital Beam Forming Automotive Radar (DBF 차량용 레이더를 위한 다중 표적의 정확한 각도 추정 연구)

  • Lee, Seong-Hyeon;Choi, In-Oh;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.806-813
    • /
    • 2015
  • In order to satisfy several conditions with respect to size, weight, and costs, automotive radars use an antenna consisting of a small number of receiving channels. If RELAX technique is applied to the automotive radars, angles of targets located in antenna beam can be estimated as well as the number of the targets. However, a small number of receiving channels in the antenna leads to inaccurate spectral estimation in angle domain, which in turn degrades performance of RELAX technique. Therefore, in this study, root-MUSIC technique coupled with MDL criterion is introduced to decide accurate angles of targets in antenna beam. In simulations, we show superior performance of proposed scheme using simulation results when three point targets are located in antenna beam.

Channel Capacity Maximization in a Distorted 2×2 LOS MIMO Link

  • Ko, In-Chang;Park, Hyung-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.72-77
    • /
    • 2018
  • This paper presents a novel channel capacity maximization method for a distorted $2{\times}2$ line-of-sight (LOS) multiple-input multiple-output (MIMO) link. A LOS MIMO link may be distorted by the influence of environmental factors such that the channel capacity of the LOS MIMO link may be degraded. By using the proposed method, the channel capacity of a distorted $2{\times}2$ LOS MIMO link can be the same as that of the ideal $2{\times}2$ LOS MIMO link. The proposed method employs an additional receiver antenna to maximize the channel capacity. In contrast to a $3{\times}2$ LOS MIMO link, a receiver circuit for a third receiving antenna is not necessary. Hence, the receiver for the proposed method is much simpler than that for a $3{\times}2$ LOS MIMO link. We determine the optimal position of the additional receiver antenna analytically. Simulation results show that the channel capacity can approach the ideal using the proposed method.

Adaptive Beamforming System Based on Combined Array Antenna (혼합 배열 안테나 기반의 적응 빔형성 시스템)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2021
  • The 5G communication system employs the millimeter wave with the extremely high frequency. Since the high frequency signal has the strong straightness, the beamforming technology based on the multiple base stations is required for services covering wide range. The beamformer needs the angle-of-arrival(AOA) information of the signal incident to the antenna, and it is generally estimated through the high resolution AOA estimation algorithm such as Multiple Signal Classification (MUSIC) or Estimation of Signal Parameters via Rotational Invariacne Technique (ESPRIT). Although various antenna array shapes can be employed for the beamformer, a single shape (square, circle, or hexagonal) is typically utilized. In this paper, we introduce a transmitting/receiving beamforming system based on the combined array antenna with square and circular shapes, which is proper to various frequency signals, and evaluate its performance. For evaluating the performance of the proposed beamforming system based on the combined array antenna, we implement the computer simulation employing various scenarios.

Cascade AOA Estimation Algorithm Based on FMCCA Antenna (FMCCA 안테나 기반 캐스케이드 도래각 추정 알고리즘)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1081-1088
    • /
    • 2021
  • The modern wireless communication system employes the beamforming technique based on a massive array antenna with a number of elements, for supporting the smooth communication services. A reliable beamforming technology requires the Angle-of-Arrival(: AOA) information for the signal incident to the receiving antenna, which is generally estimated by the high-resolution AOA estimation algorithm such as Multiple Signal Classification(: MUSIC). Although the MUSIC algorithm has the excellent estimation performance, it is difficult to estimate AOA in real time for the massive array antenna due to the extremely high computational complexity. In order to enhance this problem, in this paper, we propose the cascade AOA estimation algorithm based on a Flexible Massive Concentric Circular Array(: FMCCA) antenna with the On/Off function for antenna elements. The proposed cascade algorithm consists of the CAPON algorithm using some elements among entire antenna elements and the Beamspace MUSIC algorithm using entire elements. We provide computer simulation results for various scenarios to demonstrate the AOA estimation performance of the proposed approach.

Channel Capacity of OFDM-Based Multiple Antenna Systems with Correlated Signals : 2X2 Antenna Case (수신 신호 상관을 고려한 OFDM 다중 안테나 시스템의 채널 용량 : 2X2 안테나의 경우)

  • Choi Jae-Ha;Jang Ju-Hyuk;Shin Heui-young;Kim Nam-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.931-937
    • /
    • 2004
  • This study examines the channel capacity of a multiple antenna system based on OFDM(Othogonal Frequency Division Multiplexing) when there are correlations among received signals in the frequency selective Rayleigh fading. As for a case that two transmitting and two receiving antennas are used, the channel capacity is derived as a function of correlation in a closed-form and the effect on channel capacity is analyzed when the mean value of the of received signal power is identical/ non-identical between the two receiving antennas. Analytical results show that the channel capacity decreases with the correlation coefficient of the received signals, and the decreasing rate is accelerated when the correlation coefficient of the received signals is greater than 0.7. In addition, the channel capacity reaches its peak when the received mean signal power of each branch is identical.

Implementation of Video Transmitting and Receiving System for Acquisition of Test Data (시험자료 획득을 위한 영상 송수신 시스템 구현)

  • Ryu, Sang-Gyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.681-687
    • /
    • 2017
  • This paper presents about an implementation of Video Transmitting and Receiving System(VTRS) for acquiring test data. The VTRS consists of two parts. The first is Transmitter Unit(TU) that is installed on a missile to acquire various kinds of data and transmit the data to the ground through RF signals. The second is Receiver Unit(RU) that receives the transmitted RF signals and reconstruct those to the original data. To gather a high speed data reliably and securely on the ground, the TU is designed by considering data transfer scheme, data compression, modulation method, encryption technic, link budget, and antenna radiation pattern. Further, a placement method of multiple receiving stations is suggested. The VTRS has been tested on a field to check the link margins and maximum receiving distance in a real environment. Finally, the VTRS is applied to a missile flight test and gathered high speed data reliably.

Design and implementation of Multiband Antenna for Satellite Broadcasting Receiving using Beam Tilt (빔 틸트를 이용한 위성 방송 수신용 다중 대역 안테나 설계 및 구현)

  • Park, Kwan-Joon;Park, Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.318-325
    • /
    • 2019
  • As satellite communication technology with high efficiency and spatiality evolves, demands of customer for efficient and effective satellite broadcasting services are increasing due to interval reduction of the between satellites, and the limited radio-frequency spectrum resources. Recently, research on antenna that it possible to simultaneously receive multiple signal from various satellites while holding maintain the same number of previous reception channels by using the single reflector has been ongoing. It is necessary to be able to simultaneously receive signals from various satellites in order to maintain the same number of previous reception channels. We suggest a multiband antenna which can be simultaneously and independently receiving Ku band and Ka band satellite broadcasting signals transmitted by three adjacent satellites. We have designed and simulated using commercial design tools TICRA CHAMP and CST MWS to meet the target specifications. It appears that the antenna has -10 dB return loss, and more than 40 dBi directivity gain in Ku band and Ka band respectively.