• Title/Summary/Keyword: Multiple power sources

Search Result 140, Processing Time 0.035 seconds

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

An Evaluation for Predicting the Far Wake of Tidal Turbines

  • Yang, C.J.;Hoang, A.D.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.155-156
    • /
    • 2012
  • In the modern age, as man's demand of energy is continuously grew, tidal becomes one of the sustainable energy sources that have been investigating thoroughly recently. Tidal turbine has proved high potential as a future power-generating device. To effectively capture tidal energy on site, a group of tidal turbines should be used and positioned in some formation with proper size and space so that energy can be absorbed from multiple point. Thus, the turbines together with the flow filed becomes a huge domain, a tidal farm. So, it becomes more convenient if a whole turbine farm is simulated by means of actuator discs since the time and cost for analysis can be reduced. This paper aims to evaluate the operating performance (power efficiency and energy restoration rate), mutual influence (for different longitudinal and lateral spaces), the influence of velocity profiles, turbulence intensity and the far wake characteristic of tidal turbines operating in farm formation. The results of this study help contributing to the present development of tidal turbine as the future potential energy conversion machinery.

  • PDF

Incipient Fault Detection of Reactive Ion Etching Process

  • Hong, Sang-Jeen;Park, Jae-Hyun;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.262-271
    • /
    • 2005
  • In order to achieve timely and accurate fault detection of plasma etching process, neural network based time series modeling has been applied to reactive ion etching (RIE) using two different in-situ plasma-monitoring sensors called optical emission spectroscopy (OES) and residual gas analyzer (RGA). Four different subsystems of RIE (such as RF power, chamber pressure, and two gas flows) were considered as potential sources of fault, and multiple degrees of faults were tested. OES and RGA data were simultaneously collected while the etching of benzocyclobutene (BCB) in a $SF_6/O_2$ plasma was taking place. To simulate established TSNNs as incipient fault detectors, each TSNN was trained to learn the parameters at t, t+T, ... , and t+4T. This prediction scheme could effectively compensate run-time-delay (RTD) caused by data preprocessing and computation. Satisfying results are presented in this paper, and it turned out that OES is more sensitive to RF power and RGA is to chamber pressure and gas flows. Therefore, the combination of these two sensors is recommended for better fault detection, and they show a potential to the applications of not only incipient fault detection but also incipient real-time diagnosis.

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

Performance Analysis And Optimization For AF Two-Way Relaying With Relay Selection Over Mixed Rician And Rayleigh Fading

  • Fan, Zhangjun;Guo, Daoxing;Zhang, Bangning;Zeng, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3275-3295
    • /
    • 2012
  • In this paper, we analyze the performance of an amplify-and-forward (AF) two-way relaying system, where two sources exchange information via the aid of an intermediate relay that is selected among multiple relays according to max-min criterion. We consider a practical scenario, where one source-relay link undergoes Rician fading, and the other source-relay link is subject to Rayleigh fading. To be specific, we derive a tight lower bound for the outage probability. From this lower bound, the asymptotic outage probability and average symbol error rate (SER) expressions are derived to gain insight into the system performance at high signal-to-noise ratio (SNR) region. Furthermore, we investigate the optimal power allocation (PA) with fixed relay location (RL), optimal RL with fixed PA and joint optimization of PA and RL to minimize the outage probability and average SER. The analytical expressions are verified through Monte Carlo simulations, where the positive impact of Rician factor on the system performance is also illustrated. Simulation results also validate the effectiveness of the proposed PA and relay positioning schemes.

Efficient Privacy-Preserving Metering Aggregation in Smart Grids Using Homomorphic Encryption (동형 암호를 이용한 스마트그리드에서의 효율적 프라이버시 보존 전력량 집계 방법)

  • Koo, Dongyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.685-692
    • /
    • 2019
  • Smart grid enables efficient power management by allowing real-time awareness of electricity flows through two-way communication. Despite its various advantages, threats to user privacy caused by frequent meter reading hinder prosperous deployment of smart grid. In this paper, we propose a privacy-preserving aggregation method exploiting fully homomorphic encryption (FHE). Specifically, it achieves privacy-preserving fine-grained aggregation of electricity usage for smart grid customers in multiple electrical source environments, while further enhancing efficiency through SIMD-style operations simultaneously. Analysis of our scheme demonstrates the suitability in next-generation smart grid environment where the customers select and use a variety of power sources and systematic metering and control are enabled.

A characteristics study on the Second-harmonic generation conversion efficiency of Pulsed Nd:YAG Laser adopted Superposition multiple Mesh Networks (중첩다단 메쉬회로를 적용한 펄스형 Nd:YAG 레이저의 2차 고조파 변환효율에 관한 특성연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.565-572
    • /
    • 2001
  • At the most recent years, laser medical instruments, laser applications and laser nuclear fusion need strong visible light and ultraviolet rays. Nonlinear optical devices, such as harmonic generators and parametric oscillators, provide a means of extending the frequency range of available laser sources. Frequency conversion is a useful technique for extending the utility of high-power lasers. It utilizes the nonlinear optical response of an optical medium in intense radiation fields to generate new frequencies. These progresses have been used to generate high-power radiation in all spectral regions, from the ultraviolet to the far infrared. Optical parametric oscillators and amplifiers generate two waves of lower frequency They are capable of generating a range of wavelengths from a single frequency source, in some cases spanning the entire visible and near infrared regions. Consequently, in order to obtain the green light, the pulsed Nd:YAG laser using multiple-mesh PFN(Pulsed Forming Network) method with Nonlinear optical device was adopted. We compared the current pulseshapes with the laser output energy, and conversion efficiency.

  • PDF

Application of Sequence Diagrams to the Reverse Engineering Process of the ESf-ccs

  • Hasan, Md. Mehedi;Elakrat, Mohamed;Mayaka, Joyce;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Reverse engineering involves examining a system or component so as to comprehend its structure, functionality, and operation. Creation of a system model in reverse engineering can serve several purposes: test generation, change impact analysis, and the creation of a new or modified system. When attempting to reverse engineering a system, often the most readily accessible information is the system description, which does not readily lend itself to use in Model Based System Engineering (MBSE). Therefore, it is necessary to be able to transform this description into a diagram, which clearly depicts the behavior of the system as well as the interaction between components. This study demonstrates how sequence diagrams can be extracted from the systems description. Using MBSE software, the sequence diagrams for the Engineered Safety Features Component Control System (ESF-CCS) of the Nuclear Power Plant are created. Sequence diagrams are chosen because they are a means of representing the systems behavior and the interaction between components. In addition, from these diagrams, the system's functional requirements can be elicited. These diagrams then serve as the baseline of the reverse engineering process and multiple system views are subsequently be created from them, thus speeding up the development process. In addition, the use of MBSE ensures that any additional information obtained from auxiliary sources can then be input into the system model, ensuring data consistency.

Optimal Power Allocation for Spatial Division Multiplexing Scheme at Relays in Multiuser Distributed Beamforming Networks (다중 사용자 분산 빔포밍 네트워크의 중계기에서의 공간 분할 다중화 기법을 위한 최적 전력 할당 방법)

  • Ahn, Dong-Gun;Seo, Bang-Won;Jeong, Cheol;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.360-370
    • /
    • 2010
  • In this paper, a distributed beamforming problem is considered in an amplify-and-forward (AF) wireless relay network consist of multiple source-destination pairs and relaying nodes. To exploit degree of freedom of the number of beamformers, in the first step, we proposed that the sources transmit their signals through orthogonal channels. During the second step, the relays transmit their received signals multiplied by complex weights to amplify and compensate for phase changes introduced by the backward channels through one common channel. The optimal beamforming vectors are obtained through minimization of the total relay transmit power while the signal-to-interference-plus-noise ratios (SINRs) at the destinations are above certain thresholds to meet a quality of services (QoSs) level. In the numerical example, it is shown that the proposed scheme needs less transmit power for moderate network data rates than other schemes, such as space division multiplexing or time-division multiplexing scheme.