• Title/Summary/Keyword: Multiple input and single output system

Search Result 139, Processing Time 0.029 seconds

Maximum Ratio Transmission for Space-Polarization Division Multiple Access in Dual-Polarized MIMO System

  • Hong, Jun-Ki;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3054-3067
    • /
    • 2015
  • The phenomena of higher channel cross polarization discrimination (XPD) is mainly observed for future wireless technologies such as small cell network and massive multiple-input multiple-output (MIMO) system. Therefore, utilization of high XPD is very important and space-polarization division multiple access (SPDMA) with dual-polarized MIMO system could be a suitable solution to high-speed transmission in high XPD environment as well as reduction of array size at base station (BS). By SPDMA with dual-polarized MIMO system, two parallel data signals can be transmitted by both vertically and horizontally polarized antennas to serve different mobile stations (MSs) simultaneously compare to conventional space division multiple access (SDMA) with single-polarized MIMO system. This paper analyzes the performance of SPDMA for maximum ratio transmission (MRT) in time division duplexing (TDD) system by proposed dual-polarized MIMO spatial channel model (SCM) compare to conventional SDMA. Simulation results indicate that how SPDMA utilizes the high XPD as the number of MS increases and SPDMA performs very close to conventional SDMA for same number of antenna elements but half size of the array at BS.

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

Test and Simulation of an Active Vibration Control System for Helicopter Applications

  • Kim, Do-Hyung;Kim, Tae-Joo;Jung, Se-Un;Kwak, Dong-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.442-453
    • /
    • 2016
  • A significant source of vibration in helicopters is the main rotor system, and it is a technical challenge to reduce the vibration in order to ensure the comfort of crew and passengers. Several types of passive devices have been applied to conventional helicopters in order to reduce the vibration. In recent years, helicopter manufacturers have increasingly adopted active vibration control systems (AVCSs) due to their superior performance with lower weight compared with passive devices. AVCSs can also maintain their performance over aircraft configuration and flight condition changes. As part of the development of AVCS software for light civil helicopter (LCH) applications, a test bench is constructed and vibration control tests and simulations are performed in this study. The test bench, which represents the airframe, is excited using a pair of counter rotating force generators (CRFGs) and a multiple input single output (MISO) AVCS that consists of three accelerometer sensors and a pair of CRFGs; a filtered-x least mean square (LMS) algorithm is applied for the vibration reduction. First, the vibration control tests are performed with uniform sensor weights; then, the change in the control performance according to changes in the sensor weight is investigated and compared with the simulation results. It is found that the vibration control performance can be tuned through adjusting the weights of the three sensors, even if only one actuator is used.

Computationally-Efficient Algorithms for Multiuser Detection in Short Code Wideband CDMA TDD Systems

  • De, Parthapratim
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper derives and analyzes a novel block fast Fourier transform (FFT) based joint detection algorithm. The paper compares the performance and complexity of the novel block-FFT based joint detector to that of the Cholesky based joint detector and single user detection algorithms. The novel algorithm can operate at chip rate sampling, as well as higher sampling rates. For the performance/complexity analysis, the time division duplex (TDD) mode of a wideband code division multiplex access (WCDMA) is considered. The results indicate that the performance of the fast FFT based joint detector is comparable to that of the Cholesky based joint detector, and much superior to that of single user detection algorithms. On the other hand, the complexity of the fast FFT based joint detector is significantly lower than that of the Cholesky based joint detector and less than that of the single user detection algorithms. For the Cholesky based joint detector, the approximate Cholesky decomposition is applied. Moreover, the novel method can also be applied to any generic multiple-input-multiple-output (MIMO) system.

Performance Analysis of Multiuser MIMO Systems with Zero Forcing Receivers (Zero Forcing 수신기를 결합한 다중사용자 다중안테나 시스템의 성능 분석)

  • Sung, Chang-Kyung;Moon, Sung-Hyun;Park, Eun-Sung;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.592-599
    • /
    • 2009
  • In this paper, we consider multiuser multi-input/multi-output antenna systems with zero-forcing receivers in downlink. In this case, to exploit multiuser diversity, spatial-division multiple access (SDMA) system allows to assign different users to a part of transmit antennas at the base station whereas spatial-division multiplexing (SDM) system assigns all antennas to single user's data stream. In this paper, we present analytical frameworks to evaluate performance of these systems. We first analyze the performance of these two systems by deriving closed-form expressions of achievable throughput. Numerical results show that the derived expressions are very tight. In addition, we approximate the capacity expression of SDM and SDMA systems and compare the SDM with the optimal case.

Performance Analysis of Antenna Polarization Diversity on LTE 2×2 MIMO in Indoor Environment (실내 환경에서 LTE 2×2 MIMO 기술의 안테나 편파 다이버서티 성능 분석)

  • Nguyen, Duc T.;Devi, Ningombam Devarani;Shin, Seokjoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.1
    • /
    • pp.7-21
    • /
    • 2017
  • Multiple antenna techniques employed in fourth generation mobile communication systems are affected on their performance mostly by transmission environments and antenna configurations. The performance of the indoor LTE(Long-term Evolution) MIMO(multiple input multiple output) has been rigorously evaluated with considering various diversity transmission schemes and propagation conditions in the paper. Specifically, MAC TP(medium access control throughput) and LTE system parameters related to the MIMO technique are analyzed for several indoor propagation conditions. The performance comparison between multiple antenna diversity mode and single antenna mode has been derived as well. The results performed in the paper give the guideline on antenna configurations of polarization diversity in LTE 2×2 MIMO for various indoor channel environments, and possibly are exploited by network operators and antenna manufacturers.

Module UPS of multi-parallel operation for use in information & telecommunication systems (정보통신용 다병렬 운전의 모듈식 무정전전원장치)

  • Koo, Tae-Geun;Ryu, Ji-Su;Bae, Sang-Gyu;Park, Keun-Kap
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.390-393
    • /
    • 2007
  • The reliability as well as the power capability of the UPS system can be increased by replacing a single UPS unit with multiple small UPS units in parallel, resulting in a so-called module UPS. This module UPS system allows that a new module can be added or replaced while maintaining power to loads, which is a hot-swappable operation. In addition, it has desirable features such as ease of output power expandability, convenience of maintenance and repair, and high reliability. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. 5kVA modules are designed and implemented to confirm the effectiveness of the proposed approaches. Experimental results show that the module UPS system has a high power factor, a low distortion of output voltage and input current, hot-swappable operations and good load sharing characteristics.

  • PDF

Multi-Antenna based AOA Positioning using Phase Difference (다중 안테나 기반 위상 차이를 이용한 AOA 측위 기법)

  • Park, Ik-Hyun;Yoo, Kook-Yeol;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • In this paper, we have studied the performance of the AOA (Angle of Arrival) in multi-antenna systems for LBS (Location Based Services) and we also analyzed the performance of the AOA in SISO (Single Input Single Output) in multipath environments and their differences. The adequacy of AOA positioning in new communication environments was determined. Currently used positioning methods in 3G communication environment has been developed based on SISO. However, the accuracy of SISO-based TOA (Time of Arrival), TDOA (Time Difference of Arrival), AOA positioning techniques degraded in multipath environments. The communication system will be changed and developed. According to enhanced positioning techniques are required. Using antenna characteristics and the phase difference between antennas of LTE-Advanced standard's key technique MIMO system AOA positioning, and SISO based AOA positioning performance were analyzed. We found that AOA technique potential for use based on Multiple antenna systems by computer simulations.

MRC MMSE Equalization for SC-FDE in Amplify-and-Forward Relaying Networks (AF 방식 중계기 네트워크에서의 SC-FDE를 위한 MRC MMSE 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2011
  • Relay-assisted multiple input multiple output (MIMO) technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose maximum ratio combining (MRC) minimum mean-square-error (MMSE) equalization for single carrier-frequency domain equalizer (SC-FDE) in amplify-and-forward (AF) relaying networks. The performance of SC-FDE system can be improved considerably by achieving both the diversity gain and the MMSE equalization gain when the signals from source-destination (S->D) and source-relay-destination (S->R->D) are combined and equalized by means of the MMSE criteria. We find the weighting coefficients of MRC combining and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying networks. Simulation results show that the proposed relay-based system considerably outperforms the conventional SC-FDE system.

DFT-based Channel Estimation Scheme for Sidelink in D2D Communication (D2D 통신에서 사이드링크를 위한 DFT 기반 채널 추정 기법)

  • Moon, Sangmi;Chu, Myeonghun;Kim, Hanjong;Kim, Daejin;Kim, Cheolsung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.22-31
    • /
    • 2015
  • Recently, 3rd Generation Partnership Project (3GPP) has developed device-to-device (D2D) communication to cope with the explosively increasing mobile data traffic. The D2D communication uses sidelink based on single carrier-frequency division multiple access (SC-FMDA) due to its low peak-to-average power ratio (PAPR). In addition, demodulation reference signal (DMRS) is designed to support multiple input multiple output (MIMO). In this paper, we propose the DFT-based channel estimation scheme for sidelink in D2D communication. The proposed scheme uses the 2-Dimensional Minimum Mean Square Error (2-D MMSE) interpolation scheme for the user moving at a high speed. We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-Advanced system. Simulation results show that the proposed channel estimation scheme can improve signal-to-interference-plus-noise ratio (SINR), throughput and spectral efficiency of conventional scheme.