• Title/Summary/Keyword: Multiple flight vehicles

Search Result 30, Processing Time 0.027 seconds

Fusion Tracking Filter for Satellite Launch Vehicles (위성발사체 궤도추정을 위한 융합필터 연구)

  • Ryu, Seong Sook;Kim, Jeongrae;Song, Yong Kyu;Ko, Jeonghwan
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • The flight safety system for the satellite launch vehicles is required in order to minimize the risk due to launch vehicle failure. For prompt and reliable decision of flight termination, the flight safety system usually uses multiple sensors to estimate launch vehicle's flight trajectory. In that case, multiple types of observed tracking data makes it difficult to identify the flight termination condition. Therefore, a fusion tracking filter handling the multiple tracking data is necessary for the flight safety system. This research developed a simulation software for generating multiple types of launch vehicle tracking data, and then processed the data with fusion filters.

  • PDF

Consensus of Leader-Follower Multi-Vehicle System

  • Zhao, Enjiao;Chao, Tao;Wang, Songyan;Yang, Ming
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.522-534
    • /
    • 2017
  • According to the characteristics of salvo attack for the multiple flight vehicles (MFV), the design of cooperative guidance law can be converted into the consensus problem of multi-vehicle system through the concept of multi-agent cooperative control. The flight vehicles can be divided into leader and followers depending on different functions, and the flight conditions of leader are independent of the ones of followers. The consensus problem of leader-follower multi-vehicle system is researched by graph theory, and the consensus protocol is also presented. Meanwhile, the finite time guidance law is designed for the flight vehicles via the finite time control method, and the system stability is also analyzed. Whereby, the guidance law can guarantee the line of sight (LOS) angular rates converge to zero in finite time, and hence the cooperative attack of the MFV can be realized. The effectiveness of the designed cooperative guidance method is validated through the simulation with a stationary target and a moving target, respectively.

Collision-free Flight Planning for Cooperation of Multiple Unmanned Aerial Vehicles (다중 무인 항공기의 협동 작업을 위한 무 충돌 비행 계획)

  • Park, Jae-Byung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.2
    • /
    • pp.63-70
    • /
    • 2012
  • The collision-free flight planning method based on the extended collision map is proposed for cooperation of multiple unmanned aerial vehicles (UAVs) in a common 3-dimensional workspace. First, a UAV is modeled as a sphere, taking its 3-D motions such as rolling into consideration. We assume that after entering the common workspace, the UAVs move along their straight paths until they depart from the workspace, and that the priorities of the UAVs are determined in advance. According to the assumptions, the collision detection problem between two spheres in $R^3$ can be reduced into the collision detection problem between a circle and a line in $R^2$. For convenience' sake and safety, the collision regions are approximated by collision boxes. Using the collision boxes, the entrance times of the UAVs are scheduled for collision avoidance among the UAVs. By this way, all UAVs can move in the common workspace without collisions with one another. For verifying the effectiveness of the proposed flight planning method, the simulation with 12 UAVs is carried out.

Increasing Flight Endurance of MAVs using Multiple Quantum Well Solar Cells

  • Hassanalian, Mostafa;Radmanesh, Mohammadreza;Sedaghat, Ahmad
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.212-217
    • /
    • 2014
  • Micro Aerial Vehicles (MAVs) are useful devices to assess new features that may be utilized in a full size aircraft to enhance performance or to increase endurance. In this article, sources for energy saving in the micro air vehicles are initially addressed. Then, by specifying the important parameters on energy consumption of an aircraft, a feasibility study is conducted to assess the benefit of using solar cells to increase flight endurance. Next, a new solar cell has been designed and optimized for MAVs. This cell consists of a multiple quantum wells for which the quantum factor and the absorption coefficient are calculated by solving the Shrodinger equation using MATLAB software. Then, the manner and influence of MAVs parameters using the solar cells are examined to suggest optimal planform for different purposes. In order to increase flight endurance, it is noted that by using appropriate planform and the optimized solar cells, flight endurance can be increased by more than 30 percent.

A Study on System for Synchronization of Multiple UAVs and Ground Control System (무인이동체 및 지상국 컴퓨터 간의 시간 정보 동기화를 위한 시스템 연구)

  • Lee, Won-Seok;Lee, Woon-Sang;Song, Hyoung-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • In this paper, system that includes multiple unmanned aerial vehicles (UAVs) are considered. The vehicles are equipped with a mission computer for a specific mission and equipment. The mission equipment operates based on the time of mission computer. Also, data collected by flight computer and mission computer is saved with the time of each operating system. Generally, time offset between multiple computers always exists, though the computers are connected to the Internet. When the data collected by multiple computers is combined, the time offset causes damage on reliability of the combined data. Computers that connected to the Internet are synchronized by network time protocol (NTP). This paper proposes a system that the time of multiple mission computers are synchronized by the same NTP server to minimize the time offset. In the results of the measurement, the system time offset of multiple mission computer is maintained within 10ms from the system time of the server computer.

Leader - Follower based Formation Guidance Law and Autonomous Formation Flight Test of Multiple MAVs (편대 유도 법칙 및 초소형 비행체의 자동 편대 비행 구현)

  • You, Dong-Il;Shim, Hyun-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • This paper presents an autonomous formation flight algorithm for micro aerial vehicles (MAVs) and its flight test results. Since MAVs have severe limits on the payload and flight time, formation of MAVs can help alleviate the mission load of each MAV by sharing the tasks or coverage areas. The proposed formation guidance law is designed using nonlinear dynamic inversion method based on 'Leader-Follower' formation geometric relationship. The sensing of other vehicles in a formation is achieved by sharing the vehicles' states using a high-speed radio data link. the designed formation law was simulated with flight data of MAV to verify its robustness against sensor noises. A series of test flights were performed to validate the proposed formation guidance law. The test result shows that the proposed formation flight algorithm with inter-communication is feasible and yields satisfactory results.

A Study on Guidance Law Design and Simulation of Multiple UAV Formation Flying (다비행체 편대비행을 위한 유도법칙 및 시뮬레이션에 관한 연구)

  • No, Tae-Soo;Jeon, Gyeong-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.859-866
    • /
    • 2008
  • A guidance scheme for controlling the relative geometry of multiple flight vehicle formation flying is proposed. Each flight vehicle in the formation takes the roles of leader and follower simultaneously except for the formation leader. In this scheme, the flight commands for a leader are shared by all the followers and this leaders to a synchronized flight of all flight vehicles comprising the formation. Lyapunov stability theorem is used to obtain the guidance law. High fidelity nonlinear simulation results are presented to show the effectiveness of the proposed guidance law using a reconnaissance and surveillance mission example.

Leaderless Formation Control Strategy and Stability Analysis for Multiple UAVs (리더가 없는 방식의 다수 무인기 편대비행 제어와 안정성 해석)

  • Seo, Joong-Bo;Ahn, Chae-Ick;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.988-995
    • /
    • 2008
  • A consensus-based feedback linearization method is proposed to maintain a specified time-varying geometric configuration for formation flying of multiple autonomous vehicles. In this approach, there exists no explicit leader in the team, and the proposed control strategy requires only the local neighbor-to-neighbor information between vehicles. The information flow topology between the vehicles is defined by Graph Laplacian matrix, and the formation flying can be achieved by the proposed feedback linearization with consensus algorithm. The stability analysis of the proposed controller is also performed via eigenvalue analysis for the closed-looop system. Numerical simulation is performed for rotary-wing type micro aerial vehicles to validate the performance of the proposed controller.

A Study on the Flight Vibration Environmental Specification of Unmanned Flying Vehicle using Random Vibration Test and Analysis Methods (랜덤 진동 시험 및 해석 기법을 이용한 무인 비행체의 비행 진동 환경 규격 연구)

  • Jangseob, Choi;Dongho, Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.596-605
    • /
    • 2022
  • In this study, analysis of dynamic characteristics and flight vibration was performed to unmanned aerial vehicles. The analysis model was supplemented by performing a dynamic characteristic test and a random vibration test using manufactured dummy aerial vehicle. For the dynamic characteristic test, a bungee cable was used to implement the free end boundary condition. Prior to the flight vibration test using a multiple electric shaker, a random vibration test was performed to predict the excitation force during the actual flight vibration test. It was judged that the actual test could be predicted more accurately by supplementing the analysis model from the test results. In addition, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test.

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.