• Title/Summary/Keyword: Multiple feature detection

Search Result 163, Processing Time 0.023 seconds

Automatic detection of mass type - Breast cancer on dense mammographic images (치밀 유방영상에서 mass형 유방암 자동 검출)

  • Chon Min-Su;Park Jun-Young;Kim Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.80-88
    • /
    • 2006
  • In this paper we developed a novel system for automatic detection of mass type breast cancer on dense digital mammogram images. The new approaches presented in this paper are as follows: 1) we presented a method that stably decides the mass center and radius without being affected by image signal irregularity. 2) We developed a radial directional filter that is suitable to process mass image signal. 3) And we developed the multiple feature function based on mass shape spiculation, mass center homogeneity, and mass eccentricity, so as to determine mass-type breast cancer. When the proposed system is applied to dense mammographic images, the true 기arm rate is improved by 10% over a conventional system while the false alarm is increased by 1 per image.

Environmental IoT-Enabled Multimodal Mashup Service for Smart Forest Fires Monitoring

  • Elmisery, Ahmed M.;Sertovic, Mirela
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2017
  • Internet of things (IoT) is a new paradigm for collecting, processing and analyzing various contents in order to detect anomalies and to monitor particular patterns in a specific environment. The collected data can be used to discover new patterns and to offer new insights. IoT-enabled data mashup is a new technology to combine various types of information from multiple sources into a single web service. Mashup services create a new horizon for different applications. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations may utilize IoT - enabled data mashup service to merge different types of datasets from different IoT sensor networks in order to leverage their data analytics performance and the accuracy of the predictions. This paper presents an IoT - enabled data mashup service, where the multimedia data is collected from the various IoT platforms, then fed into an environmental cognition service which executes different image processing techniques such as noise removal, segmentation, and feature extraction, in order to detect interesting patterns in hazardous areas. The noise present in the captured images is eliminated with the help of a noise removal and background subtraction processes. Markov based approach was utilized to segment the possible regions of interest. The viable features within each region were extracted using a multiresolution wavelet transform, then fed into a discriminative classifier to extract various patterns. Experimental results have shown an accurate detection performance and adequate processing time for the proposed approach. We also provide a data mashup scenario for an IoT-enabled environmental hazard detection service and experimentation results.

Intelligent Face Recognition and Tracking System to Distribute GPU Resources using CUDA (쿠다를 사용하여 GPU 리소스를 분배하는 지능형 얼굴 인식 및 트래킹 시스템)

  • Kim, Jae-Heong;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.281-288
    • /
    • 2018
  • In this paper, we propose an intelligent face recognition and tracking system that distributes GPU resources using CUDA. The proposed system consists of five steps such as GPU allocation algorithm that distributes GPU resources in optimal state, face area detection and face recognition using deep learning, real time face tracking, and PTZ camera control. The GPU allocation algorithm that distributes multi-GPU resources optimally distributes the GPU resources flexibly according to the activation level of the GPU, unlike the method of allocating the GPU to the thread fixedly. Thus, there is a feature that enables stable and efficient use of multiple GPUs. In order to evaluate the performance of the proposed system, we compared the proposed system with the non - distributed system. As a result, the system which did not allocate the resource showed unstable operation, but the proposed system showed stable resource utilization because it was operated stably. Thus, the utility of the proposed system has been demonstrated.

Multiple Texture Image Recognition with Unsupervised Block-based Clustering (비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

Generalized Steganalysis using Deep Learning (딥러닝을 이용한 범용적 스테그아날리시스)

  • Kim, Hyunjae;Lee, Jaekoo;Kim, Gyuwan;Yoon, Sungroh
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.244-249
    • /
    • 2017
  • Steganalysis is to detect information hidden by steganography inside general data such as images. There are stegoanalysis techniques that use machine learning (ML). Existing ML approaches to steganalysis are based on extracting features from stego images and modeling them. Recently deep learning-based methodologies have shown significant improvements in detection accuracy. However, all the existing methods, including deep learning-based ones, have a critical limitation in that they can only detect stego images that are created by a specific steganography method. In this paper, we propose a generalized steganalysis method that can model multiple types of stego images using deep learning. Through various experiments, we confirm the effectiveness of our approach and envision directions for future research. In particular, we show that our method can detect each type of steganography with the same level of accuracy as that of a steganalysis method dedicated to that type of steganography, thereby demonstrating the general applicability of our approach to multiple types of stego images.

Extracting Predominant Melody from Polyphonic Music using Harmonic Structure (하모닉 구조를 이용한 다성 음악의 주요 멜로디 검출)

  • Yoon, Jea-Yul;Lee, Seok-Pil;Seo, Kyeung-Hak;Park, Ho-Chong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.109-116
    • /
    • 2010
  • In this paper, we propose a method for extracting predominant melody of polyphonic music based on harmonic structure. Since polyphonic music contains multiple sound sources, the process of melody detection consists of extraction of multiple fundamental frequencies and determination of predominant melody using those fundamental frequencies. Harmonic structure is an important feature parameter of monophonic signal that has spectral peaks at the integer multiples of its fundamental frequency. We extract all fundamental frequency candidates contained in the polyphonic signal by verifying the required condition of harmonic structure. Then, we combine those harmonic peaks corresponding to each extracted fundamental frequency and assign a rank to each after calculating its harmonic average energy. We finally run pitch tracking based on the rank of extracted fundamental frequency and continuity of fundamental frequency, and determine the predominant melody. We measure the performance of proposed method using ADC 2004 DB and 100 Korean pop songs in terms of MIREX 2005 evaluation metrics, and pitch accuracy of 90.42% is obtained.

Multimodal Biometrics Recognition from Facial Video with Missing Modalities Using Deep Learning

  • Maity, Sayan;Abdel-Mottaleb, Mohamed;Asfour, Shihab S.
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.6-29
    • /
    • 2020
  • Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces more robust and trustworthy results than single modality biometrics. In this paper, we present a novel multimodal recognition system that trains a deep learning network to automatically learn features after extracting multiple biometric modalities from a single data source, i.e., facial video clips. Utilizing different modalities, i.e., left ear, left profile face, frontal face, right profile face, and right ear, present in the facial video clips, we train supervised denoising auto-encoders to automatically extract robust and non-redundant features. The automatically learned features are then used to train modality specific sparse classifiers to perform the multimodal recognition. Moreover, the proposed technique has proven robust when some of the above modalities were missing during the testing. The proposed system has three main components that are responsible for detection, which consists of modality specific detectors to automatically detect images of different modalities present in facial video clips; feature selection, which uses supervised denoising sparse auto-encoders network to capture discriminative representations that are robust to the illumination and pose variations; and classification, which consists of a set of modality specific sparse representation classifiers for unimodal recognition, followed by score level fusion of the recognition results of the available modalities. Experiments conducted on the constrained facial video dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 97.14% Rank-1 recognition rates, respectively. The multimodal recognition accuracy demonstrates the superiority and robustness of the proposed approach irrespective of the illumination, non-planar movement, and pose variations present in the video clips even in the situation of missing modalities.

Cascade CNN with CPU-FPGA Architecture for Real-time Face Detection (실시간 얼굴 검출을 위한 Cascade CNN의 CPU-FPGA 구조 연구)

  • Nam, Kwang-Min;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.388-396
    • /
    • 2017
  • Since there are many variables such as various poses, illuminations and occlusions in a face detection problem, a high performance detection system is required. Although CNN is excellent in image classification, CNN operatioin requires high-performance hardware resources. But low cost low power environments are essential for small and mobile systems. So in this paper, the CPU-FPGA integrated system is designed based on 3-stage cascade CNN architecture using small size FPGA. Adaptive Region of Interest (ROI) is applied to reduce the number of CNN operations using face information of the previous frame. We use a Field Programmable Gate Array(FPGA) to accelerate the CNN computations. The accelerator reads multiple featuremap at once on the FPGA and performs a Multiply-Accumulate (MAC) operation in parallel for convolution operation. The system is implemented on Altera Cyclone V FPGA in which ARM Cortex A-9 and on-chip SRAM are embedded. The system runs at 30FPS with HD resolution input images. The CPU-FPGA integrated system showed 8.5 times of the power efficiency compared to systems using CPU only.

Cavitation signal detection based on time-series signal statistics (시계열 신호 통계량 기반 캐비테이션 신호 탐지)

  • Haesang Yang;Ha-Min Choi;Sock-Kyu Lee;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.400-405
    • /
    • 2024
  • When cavitation noise occurs in ship propellers, the level of underwater radiated noise abruptly increases, which can be a critical threat factor as it increases the probability of detection, particularly in the case of naval vessels. Therefore, accurately and promptly assessing cavitation signals is crucial for improving the survivability of submarines. Traditionally, techniques for determining cavitation occurrence have mainly relied on assessing acoustic/vibration levels measured by sensors above a certain threshold, or using the Detection of Envelop Modulation On Noise (DEMON) method. However, technologies related to this rely on a physical understanding of cavitation phenomena and subjective criteria based on user experience, involving multiple procedures, thus necessitating the development of techniques for early automatic recognition of cavitation signals. In this paper, we propose an algorithm that automatically detects cavitation occurrence based on simple statistical features reflecting cavitation characteristics extracted from acoustic signals measured by sensors attached to the hull. The performance of the proposed technique is evaluated depending on the number of sensors and model test conditions. It was confirmed that by sufficiently training the characteristics of cavitation reflected in signals measured by a single sensor, the occurrence of cavitation signals can be determined.

Clustering-based Hierarchical Scene Structure Construction for Movie Videos (영화 비디오를 위한 클러스터링 기반의 계층적 장면 구조 구축)

  • Choi, Ick-Won;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.529-542
    • /
    • 2000
  • Recent years, the use of multimedia information is rapidly increasing, and the video media is the most rising one than any others, and this field Integrates all the media into a single data stream. Though the availability of digital video is raised largely, it is very difficult for users to make the effective video access, due to its length and unstructured video format. Thus, the minimal interaction of users and the explicit definition of video structure is a key requirement in the lately developing image and video management systems. This paper defines the terms and hierarchical video structure, and presents the system, which construct the clustering-based video hierarchy, which facilitate users by browsing the summary and do a random access to the video content. Instead of using a single feature and domain-specific thresholds, we use multiple features that have complementary relationship for each other and clustering-based methods that use normalization so as to interact with users minimally. The stage of shot boundary detection extracts multiple features, performs the adaptive filtering process for each features to enhance the performance by eliminating the false factors, and does k-means clustering with two classes. The shot list of a result after the proposed procedure is represented as the video hierarchy by the intelligent unsupervised clustering technique. We experimented the static and the dynamic movie videos that represent characteristics of various video types. In the result of shot boundary detection, we had almost more than 95% good performance, and had also rood result in the video hierarchy.

  • PDF