Deep learning is a promising solution to a number of complex problems based on its inherent capability to approximate almost all types of functions without the demand for handcrafted feature extraction. New wireless transmission and access schemes based on deep learning are being increasingly proposed as substitutes for existing approaches, providing a lower complexity and better performance gain. Among such schemes, a communications system is viewed as an end-to-end autoencoder. The learning process applied in autoencoders can automatically deal with some nonlinear or unknown properties in communications systems. Deep learning can also be used to optimize each processing block for required tasks such as channel decoding, signal detection, and multiple access. On top of recent related research trends, we suggest appropriate research approaches for communications systems to adopt deep learning.
Surveillance cameras have installed in many places because security and safety is becoming important in modern society. Through surveillance cameras installed, we can deal with troubles and prevent accidents. However, watching surveillance videos and judging the accidental situations is very labor-intensive. So now, the need for research to analyze surveillance videos is growing. This study proposes an algorithm to track multiple persons using SURF and background subtraction. While the SURF algorithm, as a person-tracking algorithm, is robust to scaling, rotating and different viewpoints, SURF makes tracking errors with sudden changes in videos. To resolve such tracking errors, we combined SURF with a background subtraction algorithm and showed that the proposed approach increased the tracking accuracy. In addition, the background subtraction algorithm can detect persons in videos, and SURF can initialize tracking targets with these detected persons, and thus the proposed algorithm can automatically detect the enter/exit of persons.
최근 스마트 기기의 보급으로 자유롭게 비디오 컨텐츠를 생성하고 이를 빠르고 편리하게 공유할 수 있는 네트워크 환경이 갖추어지면서, 퍼스널 비디오가 급증하고 있다. 그러나, 퍼스널 비디오는 비디오라는 특성 상 멀티 모달리티로 구성되어 있으면서 데이터가 시간의 흐름에 따라 변화하기 때문에 이벤트 분류를 할 때 이에 대한 고려가 필요하다. 본 논문에서는 비디오 내의 멀티 모달리티들로부터 고수준의 특징을 추출하여 시간 순으로 재배열한 것을 바탕으로 모달리티 사이의 연관관계를 Deep Neural Network(DNN)으로 학습하여 퍼스널 비디오 이벤트를 분류하는 방법을 제안한다. 제안하는 방법은 비디오에 내포된 이미지와 오디오를 시간적으로 동기화하여 추출한 후 GoogLeNet과 Multi-Layer Perceptron(MLP)을 이용하여 각각 고수준 정보를 추출한다. 그리고 이들을 비디오에 표현된 시간순으로 재 배열하여 비디오 한 편당 하나의 특징으로 재 생성하고 이를 바탕으로 학습한 DNN을 이용하여 퍼스널 비디오 이벤트를 분류한다.
이름은 사람을 구별하기 위한 특징이지만 여러 사람이 하나의 이름을 공유하는 경우와 한 사람이 여러 이름을 사용하는 경우 때문에 이름만으로는 사람을 명확히 구별할 수 없다. 이러한 문제는 정보 검색 분야에서 문서 검색이나 웹 검색, 데이터베이스 통합 등에 영향을 미친다. 특히 서지 정보에는 저자들 중 동명이인이 존재하거나 한 저자가 축약된 이름 혹은 잘못된 철자를 사용하기도 하기 때문에 에러정보가 많이 포함되어 있다. 이러한 문제를 해결하기 위해 데이터베이스에 입력된 자료 중 이름에 대한 정보를 명확하게 해야 한다. 본 논문에서는 저자간의 관계로부터 구축된 사회망을 이용해 이름의 모호성을 해결하는 방법을 제안하고 컴퓨터 과학 서지정보를 제공하는 DBLP(Digital Bibliography & Library Project) 데이터를 기반한 실험을 통해 제안한 시스템의 성능의 효율성을 평가하였다.
신종 악성코드의 등장은 기존 시그니처 기반의 악성코드 탐지 기법들을 무력화시키며 여러 분석 방지 보호 기법들을 활용하여 분석가들의 분석을 어렵게 하고 있다. 시그니처 기반의 기존 연구는 악성코드 제작자가 쉽게 우회할 수 있는 한계점을 지닌다. 따라서 본 연구에서는 악성코드 자체의 특성이 아닌, 악성코드에 적용될 수 있는 패커의 특성을 활용하여, 단시간 내에 악성코드에 적용된 패커의 분석 방지 보호 기법을 탐지하고 분류해낼 수 있는 머신러닝 모델을 구축하고자 한다. 본 연구에서는 패커의 분석 방지 보호 기법을 적용한 악성코드 바이너리를 대상으로 n-gram opcode를 추출하여 TF-IDF를 활용함으로써 피처(feature)를 추출하고 이를 통해 각 분석 방지 보호 기법을 탐지하고 분류해내는 머신러닝 모델 구축 방법을 제안한다. 본 연구에서는 실제 악성코드를 대상으로 악성코드 패킹에 많이 사용되는 상용 패커인 Themida와 VMProtect로 각각 분석 방지 보호 기법을 적용시켜 데이터셋을 구축한 뒤, 6개의 머신러닝 모델로 실험을 진행하였고, Themida에 대해서는 81.25%의 정확도를, VMProtect에 대해서는 95.65%의 정확도를 보여주는 최적의 모델을 구축하였다.
무선 센서 네트워크에서 음향 표적의 식별은 환경 감시, 침입 감시, 다중 표적 분리 등에서 많이 연구된다. 무선 센서 네트워크의 센서 노드에서 사용하는 기존의 신호 처리기법은 표적으로부터 수신된 신호의 에너지를 계산하여 표적의 존재 유무만을 기지국으로 전송하는 방법과 수신 신호를 압축하여 전송하는 방법이 많이 사용되었다. 전자의 경우 표적의 감시를 위한 무선 센서 네트워크에서는 표적의 정보가 한정적이므로 적합하지 않고 후자의 경우는 센서 노드에서의 신호처리 및 전송에 소모되는 에너지가 높아 센서의 생존시간이 줄어들게 된다. 따라서 본 논문에서는 표적의 감시를 위한 무선 센서 네트워크에서 필요한 시간정보와 표적의 주파수 정보를 포함하는 센서 노드에서의 특징 추출 기법을 제안한다. 본 논문에서는 웨이블릿 변환을 이용하여 추출된 웨이블릿 상수에서 표적의 시간 정보와 잡음이 제거된 표적의 식별 정보를 추출함으로서 센서 노드에서 에너지 효율적인 신호처리를 구현하고 추출된 특징을 전송하여 통신에 소모되는 에너지를 원신호 대비 28%로 줄이는 알고리듬을 제안한다.
본 논문은 CNOT 게이트만을 사용해 모든 다중비트플립 오류들로부터 표적큐비트를 완벽하게 보호할 수 있는 새로운 5-큐비트 다중비트플립코드를 제안하였다. 제안한 다중비트플립코드는 기존의 단일비트플립코드에서와 같이 근원오류부에 Hadamard 게이트 쌍들을 임베딩 할 경우에 쉽게 다중위상플립코드로 확장될 수 있다. 본 논문의 다중비트플립코드와 다중위상플립코드는 4 개 보조큐비트들에 의한 상태벡터 오류정보를 공유한다. 이 4-큐비트 상태벡터들은 Pauli X와 Z 정정이 수반되는 모든 다중플립오류들이 특정 근원오류를 공통으로 포함하는 특성을 반영한다. 이 특성을 이용해 본 논문은 Pauli X와 Z 근원오류의 검출과 정정을 단 3개의 CNOT 게이트로 배치 처리함으로써 다중플립 오류정정을 위한 QECC 설계에도 불구하고 저비용 실현이 가능함을 보였다. 본 논문이 제안한 5-큐비트 다중비트플립코드와 다중위상플립코드는 100% 오류정정율과 50% 오류판별율 특성을 보였다. 이 논문에 제시된 모든 QECC는 QCAD 시뮬레이터를 사용해 검증되었다.
본 논문은 그레이레벨히스토그램을 이용한 움직임 영역검출, 퍼지 클러스터링을 이용한 칼라 분할, 그레이 레벨 동시발생 행렬을 이용한 특징 추출 및 서포터 벡터 머신을 이용한 화재 분류 등과 같은 다중 이종 알고리즘을 포함하고 있는 효과적인 화재 감지 방법을 제안한다. 제안한 방법은 움직임 영역을 검출하기 위해그레이레벨히스토그램에 기초한 최적의 임계값을 결정하고 난 후, CIE LAB 칼라 공간에서 퍼지 클러스터링을 적용하여 칼라 분할을 수행한다. 이러한 두 단계는 화재의 후보 영역을 기술하는데 도움이 된다. 다음으로 그레이 레벨 동시발생 행렬을 이용하여 화재의 특징을 추출하고, 이러한 특징들은 화재인지 아닌지를 분류하기 위해 서포터 벡터 머신의 입력으로 사용된다. 제안한 방법을 평가하기위해 기존의 두 알고리즘과 화재 검출율 및 오류 화재 검출율에서 비교하였다. 모의실험결과, 제안한 방법은 97.94%의 화재 검출율 및 4.63%의 오류 화재 검출율을 보임으로써 기존의 화재 감지 알고리즘보다 우수성을 보였다.
본 논문에서는 DS-CDMA 시스템을 위한 적응 혼합 검색형 동기획득 알고리즘의 성능을 저속 페이딩 환경에서 해석한다. 먼저, CDMA 순방향 링크에서의 간섭의 불안정성 (nonstationarity)에 효율적으로 대처하기 위해 CFAR (constant false alarm rate) 특성을 갖도록 동기획득 알고리즘을 설계한다. 설계된 알고리즘의 평균 동기획득 시간 (mean acquisition time)을 이론적으로 해석하고 주파수 선택성 레일라이 페이딩 환경에서 신호탐지 확률, 탐지실패 확률, 및 오경보 율을 유도한다. 성능 해석 시 저속 페이딩 환경을 고려해, 수신 신호의 포락선이 PDI(post-detection integration) 구간 동안 일정하다고 가정한다. 끝으로 설계된 동기획득 알고리즘 대하여 부 윈도우 (sub-window)의 크기, PDI 크기, 판정 임계치 등에 따른 동기획득 성능의 변화를 cdma2000 환경을 고려하여 분석한다.
Shajihan, Shaik Althaf V.;Wang, Shuo;Zhai, Guanghao;Spencer, Billie F. Jr.
Smart Structures and Systems
/
제29권1호
/
pp.181-193
/
2022
Data-driven structural health monitoring (SHM) of civil infrastructure can be used to continuously assess the state of a structure, allowing preemptive safety measures to be carried out. Long-term monitoring of large-scale civil infrastructure often involves data-collection using a network of numerous sensors of various types. Malfunctioning sensors in the network are common, which can disrupt the condition assessment and even lead to false-negative indications of damage. The overwhelming size of the data collected renders manual approaches to ensure data quality intractable. The task of detecting and classifying an anomaly in the raw data is non-trivial. We propose an approach to automate this task, improving upon the previously developed technique of image-based pre-processing on one-dimensional (1D) data by enriching the features of the neural network input data with multiple channels. In particular, feature engineering is employed to convert the measured time histories into a 3-channel image comprised of (i) the time history, (ii) the spectrogram, and (iii) the probability density function representation of the signal. To demonstrate this approach, a CNN model is designed and trained on a dataset consisting of acceleration records of sensors installed on a long-span bridge, with the goal of fault detection and classification. The effect of imbalance in anomaly patterns observed is studied to better account for unseen test cases. The proposed framework achieves high overall accuracy and recall even when tested on an unseen dataset that is much larger than the samples used for training, offering a viable solution for implementation on full-scale structures where limited labeled-training data is available.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.