• 제목/요약/키워드: Multiple element model

검색결과 257건 처리시간 0.022초

Analysis of a cable-stayed bridge with uncertainties in Young's modulus and load - A fuzzy finite element approach

  • Rama Rao, M.V.;Ramesh Reddy, R.
    • Structural Engineering and Mechanics
    • /
    • 제27권3호
    • /
    • pp.263-276
    • /
    • 2007
  • This paper presents a fuzzy finite element model for the analysis of structures in the presence of multiple uncertainties. A new methodology to evaluate the cumulative effect of multiple uncertainties on structural response is developed in the present work. This is done by modifying Muhanna's approach for handling single uncertainty. Uncertainty in load and material properties is defined by triangular membership functions with equal spread about the crisp value. Structural response is obtained in terms of fuzzy interval displacements and rotations. The results are further post-processed to obtain interval values of bending moment, shear force and axial forces. Membership functions are constructed to depict the uncertainty in structural response. Sensitivity analysis is performed to evaluate the relative sensitivity of displacements and forces to uncertainty in structural parameters. The present work demonstrates the effectiveness of fuzzy finite element model in establishing sharp bounds to the uncertain structural response in the presence of multiple uncertainties.

다중 충돌의 영향을 고려한 쇼트피닝의 유한요소해석 (Finite Element Analysis of Shot Peening Effected by Multiple Impacts)

  • 김태준;김낙수;박순철;정원욱
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2656-2661
    • /
    • 2002
  • Multiple impact models to examine the effect of stress interference are proposed and investigated. The single shot model analysis, which used various shot ball conditions, was carried out to compare with multiple impacts analysis. Then the multiple impact analysis were performed to predict the effect of the shot ball distances. The results showed that the stress interference in the multiple impact model significantly reduced the maximum value of the compressive residual stresses. The residual stress profiles were strongly effected by the shot ball distances. The multiple impact model can simulate a realistic shot peening process rather than a single shot model does. It is concluded that the proposed model predicts the real process more accurately.

An approach of evaluation and mechanism study on the high and steep rock slope in water conservancy project

  • Yang, Meng;Su, Huaizhi;Wen, Zhiping
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.527-535
    • /
    • 2017
  • In this study, an aging deformation statistical model for a unique high and steep rock slope was proposed, and the aging characteristic of the slope deformation was better reflected. The slope displacement was affected by multiple-environmental factors in multiple scales and displayed the same tendency with a rising water level. The statistical model of the high and steep rock including non-aging factors was set up based on previous analyses and the study of the deformation and residual tendency. The rule and importance of the water level factor as a non-aging unit was analyzed. A partitioned statistical model and mutation model were established for the comprehensive cumulative displacement velocity with the monitoring study under multiple factors and multiple parameters. A spatial model was also developed to reflect and predict the whole and sectional deformation character by combining aging, deformation and space coordinates. A neural network model was built to fit and predict the deformation with a high degree of precision by mastering its feature of complexity and randomness. A three-dimensional finite element model of the slope was applied to approach the structure character using numerical simulations. Further, a three-dimensional finite element model of the slope and dam was developed, and the whole deformation state was analyzed. This study is expected to provide a powerful and systematic method to analyze very high, important and dangerous slopes.

피로 하중하에서의 복수표면크랙진전에 관한 수치시뮬레이션 (Numerical Simulation of Fatigue Growth of Multiple Surface Crack under Fatigue Load)

  • 한문식
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.133-141
    • /
    • 2002
  • This paper describes a versatile finite element technique which has been used to investigate wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems include the surface cracks in leak-before-break situations, the shape development of multiple surface defects.

사각 맴돌이 인덕터의 개량된 등가회로 모델 (A Modified Equivalent Element Model for Square Spiral Inductor)

  • 안동식;장동필;오승겹
    • 전자공학회논문지B
    • /
    • 제32B권10호
    • /
    • pp.1286-1293
    • /
    • 1995
  • Modified equivalent lumped element model for square spiral inductors have been derived. This model shows more accurate analysis performance than conventional models, and gives reliable design parameters. And this model is made through comparison among distributed multiple coupled line, numerical analysis and experimental data.

  • PDF

드로우비드 전문모델에 관한 연구 (Study on the Drawbead Expert Models)

  • 김준환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.26-29
    • /
    • 2000
  • drawbead expert models are developed for calculating drawbead restraining force and drawbead-exit thinnings which are boundary conditions in FEM stamping simulation employing the linear multiple regression method by which the deviation of drawing characteristics between drawing test and mathematical model is minimized. In order to show the efficiency and accuracy of an expert drawbead model a finite element simulation of auto-body panel stamping is carried out. The finite element simulation shows that the expert drawbead model provides the accurate solution guarantees the stable convergence and the merit in the computation time.

  • PDF

다중모델 해석을 위한 부분층별-등가단층 결합요소 (Partial Layerwise-to-ESL Coupling Elements for Multiple Model Analysis)

  • 신영식;우광성;안재석
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.267-275
    • /
    • 2009
  • 이 논문에서는 복합재료 적층판 해석을 위해 등가단층요소와 부분-선형 층별 적층요소를 서로 연계시킨 결합요소를 제안하였다. 등가단층요소는 퇴화 쉘요소에 의해 정식화되었으며, 반면에 부분-선형 층별요소의 경우 면내변위는 부분적 선형변화로, 두께방향으로의 면외변위는 일정하다고 가정하였다. 제안된 유한요소모델은 p-수렴방식에 기초를 두고 있다. 변위장 보간을 위해 적분형 르장드르 다항식이, 수치적분을 수행하기 위해서는 가우스-로바토 적분을 각각 채택하였다. 이 연구에서는 주로 p-수렴 결합요소의 검증을 위해 다양한 형태의 유한요소 다중모델에 대해 안정된 수치해석값을 보여주는 지에 초점을 두었다. 채택한 예제는 정해를 쉽게 알고 있는 단순한 문제로 인장력을 받는 평판 또는 연직하중을 받는 캔틸레버보에 적용하여 제안된 요소의 성능을 평가하였다.

Application of return mapping technique to multiple hardening concrete model

  • Lam, S.S. Eddie;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • 제9권3호
    • /
    • pp.215-226
    • /
    • 2000
  • Computational procedure within the framework of return mapping technique has been presented to integrate the constitutive behavior of a concrete model. Developed by Ohtani and Chen, this concrete model is based on multiple hardening concept, and is rate-independent and associative. Consistent tangent operator suitable for finite element analysis is derived to preserve the rate of convergence. Accuracy of the integration technique is verified and compared with available experimental data. Computational efficiency is demonstrated by comparing with results based on elasto-plastic tangent.

Optimal Inter-Element Spacing of FD-MIMO Planar Array in Urban Macrocell with Elevation Channel Modelling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4759-4780
    • /
    • 2017
  • Full Dimension multiple input multiple output (FD-MIMO) architecture employs a planar array design at the Base Station (BS) to provide high order multi-user MIMO (MU-MIMO) via simultaneous data transmission to large number of users. With FD-MIMO, the BS can also adjust the beam direction in both elevation and azimuth direction to concentrate the energy on the user of interests while minimizing the interference leakage to co-scheduled users in the same cell or users in the neighboring cells. In a typical highly populated macrocell environment, modelling the elevation angular characteristics of three-dimensional (3D) channel is critical to understanding the performance limits of the FD-MIMO system. In this paper, we study the throughput performance of FD-MIMO system with varying elevation angular spread and inter-element spacing using a 3D spatial channel model. Our results show that for a typical urban scenario, horizontal beamforming with correlated antenna spacing achieves optimal performance but by restricting the spread of elevation angles of departure, elevation beamforming achieves high array gain with wide inter-element spacing. We also realize significant gains due to spatial array processing via modelling the elevation domain and varying the inter-element spacing for both the transmitter and receiver.

Coupled Dynamic Simulation of a Tug-Towline-Towed Barge based on the Multiple Element Model of Towline

  • Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • 한국항해항만학회지
    • /
    • 제36권9호
    • /
    • pp.707-714
    • /
    • 2012
  • Recently, tug boats are widely used for towing a barge which transports building materials, a large block of a ship, offshore crane, and so on. In order to simulate the dynamics of the coupled towing system correctly, the dynamics of the towline should be well modeled. In this paper, the towline was modeled as the multiple finite elements, and each element was assumed as a rigid cylinder which moves in five degrees of freedom except roll. The external tension and its moment acting on each element of the towline were modeled depending on the position vector's direction. Tugboat's motion was simulated in six degrees of freedom where wave and current effects were included, and towed barge was assumed to move in the horizontal plane only. In order to confirm the mathematical models of the coupled towing systems, standard maneuvering trials such as course changing maneuver, turning circle test and zig-zag test were simulated. In addition, the same trials were simulated when the external disturbances like wave and current exist. As the result, it is supposed that the results might be qualitatively reasonable.