• Title/Summary/Keyword: Multiple antennas

Search Result 498, Processing Time 0.019 seconds

Analysis on the Performance Degradation of MIMO-OFDM Receiver and Hybrid Interference Cancellation with Low Complexity for the Performance Improvement Under High-Mobility Condition (MIMO-OFDM 수신기의 성능 열화 분석 및 고속 이동환경에서의 성능 향상을 위한 저복잡도 HIC 간섭제거 기법)

  • Kang, Seung-Won;Kim, Kyoo-Hyun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.95-112
    • /
    • 2007
  • Spatial Multiplexing techniques, which is a kind of Multiple antenna techniques, provide high data transmission rate by transmitting independent data at different transmit antenna with the same spectral resource. OFDM (Orthogonal Frequency Division Multiplexing) is applied to MIMO (Multiple-Input Multiple-Output) system to combat ISI (Inter-Symbol Interference) and frequency selective fading channel, which degrade MIMO system performance. But, orthogonality between subcarriers of OFDM can't be guaranteed under high-mobility condition. As a result, severe performance degradation due to ICI is induced. In this paper, both ICI and CAI (Co-Antenna Interference) which occurs due to correlation between multiple antennas, and performance degradation due to both ICI and CAI are analyzed. In addition to the proposed CIR (Channel Impulse Response) estimation method for avoiding loss in data transmission rate, HIC (Hybrid Interference Cancellation) approach for guaranteeing QoS of MIMO-OFDM receiver is proposed. We observe the results on analytical performance degradation due to both ICI & CAI are coincide with the simulation results and performance improvement due to HIC are also verified by simulation under SCM-E Sub-urban Macro MIMO channel.

Low Density Parity Check (LDPC) Coded OFDM System Using Unitary Matrix Modulation (UMM) (UMM(Unitary Matrix Modulation)을 이용한 LDPC(Low Density Parity Check) 코디드 OFDM 시스템)

  • Kim Nam Soo;Kang Hwan Min;Cho Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.436-444
    • /
    • 2005
  • Unitary matrix modulation (UMM) is investigated in multiple antennas system that is called unitary space-time modulation (USTM). In an OFDM, the diagonal components of UMM with splitting over the coherence bandwidth (UMM-S/OFDM) have been proposed. Recently LDPC code is strongly attended and studied due to simple decoding property with good error correction property. In this paper, we propose LDPC coded UMM-S/OFDM for increasing the system performance. Our proposed system can obtain frequency diversity using UMM-S/OFDM like USTM/OFDM, and large coding gain using LDPC code. The superior characteristics of the proposed UMM-S/OFDM are demonstrated by extensive computer simulations in multi-path Rayleigh fading channel.

On MIMO OTA Performance Characterization Method for Mobile Devices with Multiple Antennas (MIMO 무선 성능 성능평가 방법에 관한 연구)

  • Cho, Y.S.;Kim, Y.R.;No, S.P.;Shim, H.J.;Kim, I.K.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.84-90
    • /
    • 2012
  • Since the major cellular data service providers in U.S, Japan as well as in Korea started the LTE (Long Term Evolution) service, there has been more strong need for the methods that can accurately measure the MIMO (Multi Input-Multi Outout) OTA (Over The Air) performance of LTE handsets because the performance of the MIMO antenna determines the packet data rates in the downlink and therefore the higher system throughput of the network. In this regard, there has been a lot discussions in 3GPP on the candidate MIMO OTA test solutions. In this paper, a faire comparison has been done for the conventional method, the Envelop Correlation Coefficient (ECC) measurements, and the anechoic chamber based MIMO OTA test solution, one of the candidate system being discussed in 3GPP. The evaluations and the comparisons are conducted by numerically and experimentally.

Attitude Determination Technique using Ultrasound and RF Signal (초음파와 RF를 이용한 자세결정)

  • Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Lee, Geon-Woo;Lee, Sang-Jeong;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1025-1031
    • /
    • 2007
  • GPS is widely used for positioning applications and attitude of a vehicle can be found also with multiple antennas. However, extremely weak signal level prevents GPS from indoor operation. DR with accelerometers and gyros and landmark based localization method used for indoor applications increase complexity and cost. In this paper, a simple but very efficient ultrasound based attitude determination system which determines both position and attitude in WSN is given. The range between transmitter and receivers are measured using the arrival time difference between ultrasound and RF signal. The 3 dimensional positions can be found using more than 3 range measurements. Furthermore, if more than 2 transmitters are used, the attitude can be determined using the baseline vectors obtained by differencing transmitter and receiver positions. The prototype system is implemented to evaluate the performance of the proposed method. In addition, an error analysis shows the relation between the attitude error and basel me length, quality of measurement and orientation of a vehicle. The static and dynamic experiments performed by micro mobile robot shows accurate position with less than 1.5cm error and attitude with less than 1 degree error can be obtained continuously with 20cm baseline. It is expected that these results can be adapted without modification to indoor applications such as home cleaning robot and autonomous wheelchair maneuvering.

The Cost-effective Architecture Design of an Angle-of-Arrival Estimator in UWB Systems (UWB 시스템에서 입사각 추정기의 효율적인 하드웨어 구조 설계)

  • Lee, Seong-Joo;Han, Kwi-Beum
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.137-141
    • /
    • 2007
  • This paper proposes a cost-effective architecture design of an angle-of-arrival (AOA) estimator based on the multiple signal identification and classification (MUSIC) algerian in UWB systems adapting Multi-band OFDM (MB-OFDM) techniques with two-receive antennas. In the proposed method, by modifying the equations of algorithm in order to remove the high computational functions, the computation power can be significantly reduced without significant performance degradation. The proposed architecture is designed and verified by Verilog HDL, and implemented into 0.13um CMOS standard cell and Xilinx FPGA circuits for the estimation of hardware complexity and computation power. From the results of the implementations, we can find that the proposed circuits reduces the hardware complexity by about 43% and the estimated computation power by about 23%, respectively, compared to the architecture employing the original MUSIC algorithm.

An LDC-based MU-MIMO System with Pre-coding for Interference Cancellation and Robust Reception (간섭 제거와 수신 성능 향상을 위한 전처리기법을 적용한 LDC기반의 다중 사용자 다중 입출력 시스템)

  • Park, Myung Chul;Jo, Bong-Gyun;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper, a coding algorithm is proposed for multi-user multi-input multi-output (MU-MIMO) systems to improve the reception performance in fading conditions without reducing the bandwidth efficiency. The space division multiple access (SDMA) scheme that is one of the commonly used for MU-MIMO systems is vulnerable to the fading. The space time block code (STBC) scheme that is used to overcome the fading has a disadvantage of reduced throughput. The proposed MU-MIMO system first encodes transmitted symbols by linear dispersion code (LDC) which is less vulnerable to the fading and increases the throughput in proportional to the number of transmit antennas. Then, the LDC coded symbols are pre-coded by the result of singular value decomposition (SVD) of the estimated channel gain. We evaluate the performance of the proposed scheme compared with the conventional algorithms by computer simulations.

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications (5 GHz 무선랜 응용을 위한 소형 광대역 MEMS 안테나)

  • Kim Ji-Hyuk;Kim Hyeon Cheol;Chun Kukjin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.81-87
    • /
    • 2006
  • A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer substrates we used to realize small size and broadband characteristics. The microstrip patch is divided into 4 pieces and each patch is connected to each other using a metal microstrip line. The fabrication please process is simple and only one mask is needed. Two types of microtrip antennas are fabrication Type A is the microstrip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8{\times}12{\times}2mm^3$ and the experimental results show that the antenna type A and type B have the bandwidth of 420MHz at 5.3 GHz and 480MHz at 5.66 GHz, respectively

A Tradeoff of Multiplexing Gain and Pilot Overhead in Multi-User OFDM Virtual MIMO Uplink Systems (상향링크 다중 사용자 기반 가상적 MIMO-OFDM 시스템의 파일럿 오버헤드와 다중화 이득의 트레이드오프)

  • Ran, Rong;Cho, Sung-Yoon;Kim, Yo-Han;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.5
    • /
    • pp.437-443
    • /
    • 2008
  • In this paper, we derive the optimum number of users which can maximize the information theoretic sum capacity in multiuser OFDM virtual MIMO uplink system. In which, there are multiple antennas at the base station and a number of users with single transmit antenna. Pilot-assisted channel state estimation is assumed for a block fading channel and time-varying fading channel. We analyze the tradeoff between the multiplexing gain and pilot overhead especially in low SNR regime and conclude that the optimum number of users is min ($N_r$,LT/2 ) in frequency nonselective block fading channel and approximately equal to min ($N_r$, ${\lfloor}{\sqrt{LT+1}}-1{\rfloor}$) in time varying fading channel. assuming the same pilot and signal pwoer.

  • PDF

Performance Analysis of HDR-WPAN System with MIMO Techniques (MIMO 기법을 적용한 HDR-WPAN 시스템의 성능분석)

  • Han Deog-Su;Kang Chul-Gyu;Oh Chang-Heon;Cho Sung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1502-1509
    • /
    • 2006
  • In this paper, we proposed reliability and capacity enhancement methods for IEEE 802.15.3 HDR-WPAN (High Data Rate-Wireless Personal Area Network) system which is currently getting an interest in home network technology adopting a MIMO technique. We also analyzed performance or the proposed system through a computer simulation. The HDR-WPAN system using V-BLAST algorithm, transmitting the different signal vector to each other's sub-channel, can get the transmission speed of more than 110Mbps using two Tx/Px antenna without bandwidth expansion in TCM-64QAM mode. Also the proposed system has reliability of 104 at $E_b/N_0=35dB$ under the Rayleigh fading channel in case of two Tx/Rx antenna with MMSE algorithm. The HDR-WPAN system adopting V-BLAST method has its drawback which is very complicated to determine the decision-ordering at the receiver. But, the proposed system enhances the transmission capacity and reliability without extra bandwidth expansion by sending data streams to multiple antennas.

Multiple Frequency Offsets Cancellation Scheme Based on Alamouti Coded OFDM for Distributed Antenna Systems in Selective Fading Channel (선택적 감쇄환경에서 분산안테나 간 주파수 오차 환경에 강인한 알라무티부호화 직교주파수분할다중방식 기반 간섭 제거기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1039-1044
    • /
    • 2013
  • We propose a cancellation algorithm based on Alamouti coded OFDM to mitigate ICI due to Frequency Offset (FO) between distributed antennas in the frequency selective fading channel. In the cancellation algorithm, the interference signal is estimated by using the initial detection symbol and then the estimated interference signal is subtracted from the received signal. As the accuracy of initial symbol increases, ICI cancellation becomes more significant. Therefore, the accuracy of the initial detection symbols is very important in the cancellation algorithm. The proposed scheme improves the accuracy of the initial detection symbol by employing an ICI self-cancellation scheme. The proposed cancellation scheme with only one iteration achieves better performance compared to the conventional cancellation schemes with many times iterations based on the conventional Alamouti coded OFDM.