• Title/Summary/Keyword: Multiple Models

Search Result 2,445, Processing Time 0.027 seconds

Toward A Reusable Knowledge Based System

  • Yoo, Young-Dong
    • The Journal of Information Systems
    • /
    • v.3
    • /
    • pp.71-82
    • /
    • 1994
  • Knowledge acquisition, maintenance of knowledge base, and validation and verification of knowledge are the addressed bottlenecks of building successful knowledge based systems. Along with the increment of interesting in the knowledge based systems, the organization needs to develop a new one although it has a similar one. This causes several serious problems including knowledge redundancy and maintenance of knowledge base. This paper present three models of the reusable knowledge base which might be the solution to the above problem. Three models are : 1) multiple knowledge bases for a single AI application, 2) multiple knowledge bases for multiple AI applications, 3) a single knowledge base for multiple AI applications. A new approach to build such a reusable knowledge base in a homogeneous environment is presented. Our model combines the essential object-oriented techniques with rules in a consistent manner. Important aspects of applying object-oriented techniques to AI are discussed (inheritance, encapsulation, message passing), and some potential problems in building an AI application (decomposition technique of knowledge, search time, and heterogeneous environment) are pointed out. The models of a reusable knowledge base provide several amenities : 1) reduce the knowledge redundancy, 2) reduce the effort of maintenance of the knowledge base, 3) reuse the resource of the multiple domain knowledge bases, 4) reduce the development time.

  • PDF

Numerical modeling and analysis of RC frames subjected to multiple earthquakes

  • Abdelnaby, Adel E.;Elnashai, Amr S.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.957-981
    • /
    • 2015
  • Earthquakes occur as a cluster in many regions around the world where complex fault systems exist. The repeated shaking usually induces accumulative damage to affected structures. Damage accumulation in structural systems increases their level of degradation in stiffness and also reduces their strength. Many existing analytical tools of modeling RC structures lack the salient damage features that account for stiffness and strength degradation resulting from repeated earthquake loading. Therefore, these tools are inadequate to study the response of structures in regions prone to multiple earthquakes hazard. The objective of this paper is twofold: (a) develop a tool that contains appropriate damage features for the numerical analysis of RC structures subjected to more than one earthquake; and (b) conduct a parametric study that investigates the effects of multiple earthquakes on the response of RC moment resisting frame systems. For this purpose, macroscopic constitutive models of concrete and steel materials that contain the aforementioned damage features and are capable of accurately capturing materials degrading behavior, are selected and implemented into fiber-based finite element software. Furthermore, finite element models that utilize the implemented concrete and steel stress-strain hysteresis are developed. The models are then subjected to selected sets of earthquake sequences. The results presented in this study clearly indicate that the response of degrading structural systems is appreciably influenced by strong-motion sequences in a manner that cannot be predicted from simple analysis. It also confirms that the effects of multiple earthquakes on earthquake safety can be very considerable.

Prediction Models of Residual Chlorine in Sediment Basin to Control Pre-chlorination in Water Treatment Plant (정수장 전염소 공정 제어를 위한 침전지 잔류 염소 농도 예측모델 개발)

  • Lee, Kyung-Hyuk;Kim, Ju-Hwan;Lim, Jae-Lim;Chae, Seon Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.601-607
    • /
    • 2007
  • In order to maintain constant residual chlorine in sedimentation basin, It is necessary to develop real time prediction model of residual chlorine considering water treatment plant data such as water qualities, weather, and plant operation conditions. Based on the operation data acquired from K water treatment plant, prediction models of residual chlorine in sediment basin were accomplished. The input parameters applied in the models were water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage. The multiple regression models were established with linear and non-linear model with 5,448 data set. The corelation coefficient (R) for the linear and non-linear model were 0.39 and 0.374, respectively. It shows low correlation coefficient, that is, these multiple regression models can not represent the residual chlorine with the input parameters which varies independently with time changes related to weather condition. Artificial neural network models are applied with three different conditions. Input parameters are consisted of water quality data observed in water treatment process based on the structure of auto-regressive model type, considering a time lag. The artificial neural network models have better ability to predict residual chlorine at sediment basin than conventional linear and nonlinear multi-regression models. The determination coefficients of each model in verification process were shown as 0.742, 0.754, and 0.869, respectively. Consequently, comparing the results of each model, neural network can simulate the residual chlorine in sedimentation basin better than mathematical regression models in terms of prediction performance. This results are expected to contribute into automation control of water treatment processes.

Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

  • Chen, Youhua
    • Animal Systematics, Evolution and Diversity
    • /
    • v.30 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR), one-continuous-shift (OCS) and multiple-discrete- shifts (MDS) situations. The OCS diversification model was rejected by ${\gamma}$ statistic (${\gamma}=-5.556$, p<0.001), implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR models using "laser" package under R environment. Moreover, MDS models, implemented using another R package "MEDUSA", indicated that there were sixteen shifts over the internal nodes for amphibian phylogeny. Conclusively, both OCS and MDS models are recommended to compare so as to better quantify rate-shifting trends of species diversification. MDS diversification models should be preferential for large phylogenies using "MEDUSA" package in which any arbitrary numbers of shifts are allowed to model.

An Intelligent Tracking Method for a Maneuvering Target

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.93-100
    • /
    • 2003
  • Accuracy in maneuvering target tracking using multiple models relies upon the suit-ability of each target motion model to be used. To construct multiple models, the interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require predefined sub-models and predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers. To solve these problems, this paper proposes the GA-based IMM method as an intelligent tracking method for a maneuvering target. In the proposed method, the acceleration input is regarded as an additive process noise, a sub-model is represented as a fuzzy system to compute the time-varying variance of the overall process noise, and, to optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. The simulation results show that the proposed method has a better tracking performance than the AIMM algorithm.

GA-Based IMM Method Using Fuzzy Logic for Tracking a Maneuvering Target (기동 표적 추적을 위한 GA 기반 IMM 방법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.166-169
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model, and the GA is applied to identify this fuzzy model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.

GA-Based IMM Method for Tracking a Maneuvering Target (기동 표적 추적을 위한 유전 알고리즘 기반 상호 작용 다중 모델 기법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2382-2384
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

Design of Fuzzy IMM Algorithm based on Basis Sub-models and Time-varying Mode Transition Probabilities

  • Kim Hyun-Sik;Chun Seung-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.559-566
    • /
    • 2006
  • In the real system application, the interacting multiple model (IMM) based algorithm requires less computing resources as well as a good performance with respect to the various target maneuverings. And it further requires an easy design procedure in terms of its structures and parameters. To solve these problems, a fuzzy interacting multiple model (FIMM) algorithm, which is based on the basis sub-models defined by considering the maneuvering property and the time-varying mode transition probabilities designed by using the mode probabilities as inputs of a fuzzy decision maker, is proposed. To verify the performance of the proposed algorithm, airborne target tracking is performed. Simulation results show that the FIMM algorithm solves all problems in the real system application of the IMM based algorithm.

A GA-Based IMM Method for Tracking a Maneuvering Target (기동표적 추적을 위한 유전 알고리즘 기반 상호작용 다중모델 기법)

  • Lee Bum-Jik;Joo Young-Hoon;Park Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.16-21
    • /
    • 2003
  • The accuracy in maneuvering target tracking using multiple models is resulted in by the suitability of each target motion model to be used. The interacting multiple model (IMM) method and the adaptive IMM (AIMM) method require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems, a genetic algorithm(GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to calculate the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulation.