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An Intelligent Tracking Method for a Maneuvering Target
Bum-Jik Lee, Young-Hoon Joo, and Jin Bae Park

Abstract: Accuracy in maneuvering target tracking using multiple models relies upon the suit-
ability of each target motion model to be used. To construct multiple models, the interacting
multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require predefined
sub-models and predetermined acceleration intervals, respectively, in consideration of the prop-
erties of maneuvers. To solve these problems, this paper proposes the GA-based IMM method as
an intelligent tracking method for a maneuvering target. In the proposed method, the accelera-
tion input is regarded as an additive process noise, a sub-model is represented as a fuzzy system
to compute the time-varying variance of the overall process noise, and, to optimize the em-
ployed fuzzy system, the genetic algorithm (GA) is utilized. The simulation results show that the
proposed method has a better tracking performance than the AIMM algorithm.
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method, fuzzy system.

1. INTRODUCTION

The problem of tracking a maneuvering target has
been studied in state estimation over decades. The
Kalman filter has been widely used to estimate the
state of the target, but in the presence of a maneuver,
its performance may be seriously degraded. To solve
this problem, various techniques have been investi-
gated and applied. First, in 1970, Singer proposed a
target tracking model whose maneuver was assumed
as a first order Markov process with time correlation
[1]. Since the Singer’s method, recent research has
been roughly divided into two main approaches. One
approach is to detect a maneuver and then to cope
with it effectively. Examples of this approach include
the input estimation (IE) technique [2], the variable
state dimension (VSD) approach [3], and so on. The
other approach is to describe the motion of the target
with multiple models. The generalized pseudo-
Bayesian (GPB) approach [4], the interacting multiple
model (IMM) algorithm [5], and the adaptive IMM
(AIMM) algorithm [6] are included in this approach.

In this paper, the second approach is mainly discussed.

Accuracy in maneuvering target tracking using
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multiple models relies upon the suitability of each
target motion model to be used for a maneuver. In the
IMM algorithm, the estimate is obtained by a
weighted sum of the estimates from sub-models in
accordance with the probability of each model being
effective. But, to construct multiple models, the algo-
rithm requires predefined sub-models with the differ-
ent dimensions or process noise levels in considera-
tion of the properties of the maneuvers. On the other
hand, the AIMM algorithm needs no predefined sub-
models because it estimates the acceleration of the
target adaptively and constructs multiple models us-
ing this estimated acceleration. In this algorithm, a
two-stage Kalman estimator [7], which has a bias-free
filter and a bias filter, is used only in estimating the
acceleration. However, the acceleration intervals,
which are symmetrically added to or subtracted from
the estimated acceleration value to construct multiple
models, should also be determined by the properties
of the maneuvers.

To solve these problems and track a maneuvering
target effectively, the GA-based IMM method is pro-
posed in this paper as an intelligent tracking method
for a maneuvering target. In the maneuvering target
model, the acceleration input is regarded as an addi-
tive process noise and the time-varying variance of
this overall process noise is calculated using the rela-
tions between the filter residual and the process noise
variance. Because the filter residual increases in the
presence of a maneuver, we can treat a target maneu-
ver by adjusting the process noise variance. In the
proposed method, a sub-model is represented as a
fuzzy system to compute this time-varying variance.
The GA is applied to identify the parameters and the
structure of this fuzzy system for a certain maneuver
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input within the assumed maximum acceleration in-
put. The GA is the method used to obtain an optimal
solution based on the principles of natural population
genetics and natural selection although the mathe-
matical relationship between the parameter to be
identified and the nonlinear cost function to be opti-
mized is not known exactly. Then, multiple models
are composed of these fuzzy systems, which are op-
timized for different acceleration inputs.

Section 2 shows the maneuvering target model and
summarizes the AIMM algorithm as previous works,
and the details of the proposed method are described
in Section 3. In Section 4, the computer simulation
results prove the better tracking performance of the
proposed method than that of the AIMM algorithm.
Conclusions are finally drawn in Section 5.

2. PREVIOUS WORKS

2.1. Maneuvering target model
The linear discrete time model for a maneuvering
target is described for each axis by

X(k+1) = FX(k)+Glu(k)+w(k)], €]

1 T z
Fe ,G=T/2,
0 1 T

where X(k)=[p p) =[p v]" is the state vector, F
and G are the transition matrix and the excitation ma-
trix, respectively, w(k) is the process noise, and
u(k) is the unknown acceleration input. The meas-
urement equation is

Z(k)=HX(k)+v(k), 2)

where H =[1 0] is the measurement matrix and
v(k) is the measurement noise. w(k) and v(k) are
considered as white Gaussian noise sequences with
zero-mean and variances g and r, respectively,
and their correlation is assumed to be zero.

2.2. AIMM algorithm

The AIMM algorithm has a limited number of sub-
models for each axis, and each sub-model is repre-
sented as the estimated acceleration or the accelera-
tion levels distributed symmetrically about the esti-
mated one [6]. In the case of N sub-models for each
axis, the set of multiple models is represented as

M, ={G,(k), a,(k), -, a,(k)}
={a(k), ak) £, -, ak) £ £y}

where a(k) is the estimated acceleration and ¢,

is the predetermined acceleration interval. The actual
number of sub-models is determined according to the
computational power.

In the AIMM algorithm, the acceleration of the tar-
get is estimated in parallel for each axis by a two-
stage Kalman estimator, which consists of a bias-free
filter and a bias filter [6, 7]. The bias filter equations
to estimate the acceleration of the target are

atklk—1y=a(k =11k —1) (3a)
Pk k=1)=P*(k=11k=1)+¢", (3b)
S(k)=HU(k-1), (3¢)
Vky=(I-Kk)H)U (k) , (3d)
Uk)=FV(k-1)+G, (3e)

K (k)= P (k1 k=DS" (W)[SUKk)P" (k1 k-1)S" (k)

T -1 (3f)
+HPGk 1 k-DH +r]",

ak 1k)y=atk k=1 + K (k)[vk)-Sk)ak k-1
(3g)

Pikik)y={I-K (k)S(k)]P"(k1k-1), (3h)

where da(klk) is the bias vector, P“(k) is the co-

a

variance of the bias, ¢ is the process noise for the

bias vector, U(k) and V(k) are the sensitivity ma-
trices, K“(k) is the Kalman gain of the bias filter,
and S(k), K(k), and wv(k) are obtained from the

bias-free filter.

The AIMM algorithm to be represented by the es-
timated acceleration and the acceleration intervals
follows.

Interaction of the estimates (mixing)

N
X, (k=1k=1)=" s, (k=11k=DX, (k-11k-1),

=l

(4a)
N
B (k=11k=1)= g1, k—11k—D{P, Gk~ 11k ~1)
n=1

+[X, (k—1k-1)—-X,, (k—11k=1)]

(X, (k=11k-D=X,, (k—11k-DJ },
(4b)

where the mixing probability x,, and the normali-

nlm

zation constant ¢ are

m

1
ﬂnlm(k_llk_1)=;—¢mnﬂn(k_1)’ (Sa)
N
Uy = D Pl (k=1), (5b)
n=l1
where ¢, is the known model transition probability
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from the »th sub-model to the mth sub-model and

N
4, (k—1) is the model probability of the »th sub- Pelh) = Z,u AOIAGLD)

m=l

model at the scank —1. IR TR = Xk 1RONR, (k1K) — X (k| k)]r}
Filtering algorithm * (8D)
A - . Fig. 1 describes the AIMM algorithm with N sub-
X, (klk-)=FX,, (k-1k-D+Ga,(k-1), (6a) models.
v, (k)= Z(k)—HX, (k1 k=1), (6b) 3. GA-BASED IMM METHOD USING FUZZY

LOGIC
(k-11k-DF" +GgG";,  (6¢)

m

P, (k\k—-1)=FP,,

This paper proposes the GA-based IMM method
using fuzzy logic for a maneuvering target. In the

S,(k)=HP, (klk—-DH" +r, (6d) maneuvering target model (1), the acceleration input
u(k) is regarded as an additive process noise. A new
K, (ky=P(klk-DH'S, (k) , (6e) piecewise constant white acceleration model is
R . X(k+1)=FX(k)+Gw(k), 9
X, k'ky=X, (klk-D+K, (b, k), (6f)

where w(k) is the overall process noise with the

P,(klk)=P,(klk-1)~-K, (k)S,()K, (k). (6g) time-varying variance gq(k), Wth.h can‘b'e deter-
mined from the filter residual and its variation. Be-

Update of model probability cause the filter residual increases in the presence of a
likelihood function: maneuver, we can treat a target maneuver by adjust-
A, (k) = Vv, (k);0,S, (k)] ing the process noise variance. However, analyzing

the mathematical relations between the residual and

—l—expi—lvﬁ(k)S"‘, "k, (k)j (72) the process noise variance is very difficult. To allevi-
V2718, (k) 2 ate such a difficulty, we use the fuzzy system, which

del probability update: can approximate an unknown or highly nonlinear sys-
fodet probability upcate tem well. Therefore, in the proposed method, a sub-

A (D model is represented as a fuzzy system to calculate

M, (=== N (7b) this time-varying process noise variance and the GA

Z,,=1 A, (), is applied to identify the parameters and the structure

of the fuzzy system. Multiple models for tracking a

Estimate combination maneuvering target are finally composed of these
state estimate: fuzzy models, which are identified for various ma-
neuver inputs. The proposed method is illustrated in

}2(k k) = iﬂm(k)im(k k). (8a) Fig. 2. In the case of N sub-models, the set of mul-

tiple models are represented as
M = {tuzzy rules1, fuzzy rules 2, ---, fuzzy rules N}.

m=|

estimate covariance matrix: . .
Rth=11k-1 Koth=11k=1) ik =1) g, k=1

Wy dy,e ity

I Interaction (Mixing)

X (k- - X (k- 11k — k-1 k-1 - =
K0k =1k -1 R k=11 =1 ( )m;m ) Rkt kD Xk Patk-1)
i Off-Line Training

[ Interaction (mixing) D ' (k) ol'ljl‘;:l:;)“:\:‘éd:lﬂ

o T
X k=[P k=1 X, k-1 P k=D v,(k), Ay, (k) :
@k 1k) Qy (k1K) Two-Stage 1 Futert : 2y |
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Fig. 1 AIMM algorithm. Fig. 2. GA-based IMM method using fuzzy logic.
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3.1. GA-based IMM method

The fuzzy inference rules for calculating the time-
varying variance have the scatter-partitioned structure
within the range of input or output space. The jth

fuzzy rule for the m th sub-model is represented by
R? (j=L---M):If y,is A and , is A),, then y" is ¢}

where two input variables, y, and y, are the mth
filter residual »_ (k) and its variation Av (k), re-

m n

m

spectively. A consequent variable y™ is the process
noise variance ¢} for the jth fuzzy rule. The
Gaussian membership function A7 with the center
c; and the standard deviation o] has the follow-
ing membership grade.

2
. L zi=ey
O )= exp{‘ 2 [”0—] ] (10)

The unknown time-varying variance g, (k) for the

m th sub-model can be approximated in the following
form.

> (T o )
> (T o on)

According to the universal approximation theorem [8],
o;, and g7 ,

g, (k)= (11)

m
ij o

m

there exist optimal parameters ¢ i

which can approximate g, (k) as closely as possible.
In this paper, we use the GA to optimize these pa-
rameters, as will be presented in the next subsection.
By using (11), the filtering algorithm (6.a)—(6.g) can
be replaced for the proposed GA-based IMM method
as follows.

X, (klk=1)=FX,, (k-11k-1), (12a)

m

v, (k)= Z(k)- HX (k| k=1), (12b)

m

P (klk—=1)=FP, (k—11k-DF" +Gg,(k)G", (12c)

m

S, (ky=HP, (klk-DH" +r, (12d)

m

K (K)=Pklk-DH"S'(k), (12e)

X, (klk)=X, (klk=D+K, (v, k), (126

P, (k\k)=P, (klk-D-K, (k)S, ()KL (k). (12g)
The proposed method has the following advantages
compared with the IMM algorithm or the AIMM al-
gorithm.
1. Unlike an IMM algorithm, no sub-models prede-
fined in consideration of the property of the maneuver

are required.

2. Unlike an AIMM algorithm, no estimation of the
target acceleration or adjustment for different accel-
eration levels in accordance with the property of
maneuver is required to construct sub-models.

3. Although the property of the maneuver is un-
known, the proposed method can be applied if the
maneuver is within the assumed maximum accelera-
tion input because the fuzzy systems can effectively
infer the time-varying variances.

3.2. Optimization of fuzzy system using the GA

In this paper, the GA is applied to optimize the pa-
rameters in both the premise part and the conse-
quence part of the fuzzy system simultaneously. Ob-
viously the fuzzy system should be designed such that
the following objective function is minimized.

J = \/ (sumof position error)” + (sumof velocityerror) .

13)

The GA represents the searching variables of the
given optimization problem as a chromosome con-
taining one or more substrings. In this case, the
searching variables are the center ¢, and the stan-
i

tion of the fuzzy set A and the singleton out-

dard deviation o] for a Gaussian membership func-

putq} . A convenient way to convey the searching

variables into a chromosome is to gather all searching
variables associated with the jth fuzzy rule in the

m th sub-model into a string and to concatenate the
strings as
m o __ mn n m n m
S; —{ Cij» O1j> Caj» Oajs qj},

Sln ={ Slln’ Szm, ...’ SI/:/'II} s
where S§7' is the real coded parameter substring of

the jth fuzzy rule in an individual and S™ denotes

an individual for the mth sub-model. At the same
time and to identify the number of fuzzy rules, we
utilize the binary coded rule number string, which
assigns a 1 or O for a valid or invalid rule, respectively.
Fig. 3. illustrates the structure of the chromosome.
The initial population is made up of initial indi-
viduals to the extent of the population size. The prem-
ise string of each initial individual is determined at
random within the given search space, i.e., the range
of residual v,(k) and the range of its varia-

m

tionAv, (k). The corresponding consequent string is

determined at random using the possible range of the
standard deviation of the overall process noise [9]:

0.5a, +/7)< 5, () < [an, ++/7), (14)
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Fuzzy rules Rt pisA and y is A, , then y=q, (j=1-M)
A, A,
. 0',, 02/
Membership functions  |— i t | ; —
oy Caj q;
|

L i | Iy | 2
L Ciar ' Oy ' Cay ' O [ Y 1
E rule 1 | rule 2 |

Fig. 3. Structure of chromosome.

Parameter strings

Rule number strings | rule M-1 I rule M —I

where &, (k) is the standard deviation of the proc-

m

ess noise variance and a is the maximum value

of the acceleration input.

Each individual is evaluated by a fitness function.
Since the GA originally searches the optimal solution so
that the fitness function value is maximized, mapping
the objective function (13) to the fitness function is nec-
essary. Furthermore, since reducing the number of the
fuzzy IF-THEN rules in a hardware implementation and
a computation resource point of view is strongly desired,
we use the fitness function of the form

A 1A 15

£ J 1 M 1 ()

where A is a positive scalar, to adjust the weight be-
tween the objective function and the rule number.

The GA that optimally identifies the time-varying
variance of the proposed method is summarized as
follows [10-13]:

Step 1: Set the parameters for the GA (maximum
generation number, maximum rule number, popula-
tion size, crossover rate, and mutation rate).

Step 2: Randomly generate the initial population
such that all searching variables exist within the
search space.

Step 3: Decode the chromosome of each individual
in the population and determine the fuzzy systems for
sub-models. Evaluate the determined fuzzy systems
by (13) and give a fitness value to each individual in
the population by (15).

Step 4: Evolve a new population by reproduction,
crossover, and mutation.

Step 5: Increase the generation number by one, and
replace the old generation with the new one. During
the replacement, preserve an individual that has the
maximum fitness value by the elitist reproduction.

Step 6: Repeat Steps 3 through 5 until one of the
following is satisfied:

(1) the satisfactory population shows up,

(2) the generation number reaches the maximum gen-
eration number, or

(3) the fitness function value is not increased for the
predetermined generations.

4. SIMULATION RESULTS

In this section, the simulations are divided in two
parts: a simulation for searching the optimal fuzzy
rules off-line and a simulation for tracking a maneu-
vering target. The tracking performance of the pro-
posed method is compared with that of the AIMM al-
gorithm.

The initial parameters of the GA are presented in Table
1. The maximum acceleration input for whole simulations
is assumed to be 0.lkm/s’. The fuzzy rules identified

off-line for the acceleration input u, =0.00lkm/s’ are
shown in Table 2, for u, =0.01km/s> in Table 3, and for
u, =0.1km/s* inTable 4.

The target is assumed as an incoming anti-ship
missile on the x—y plane [14]. The initial position
of the target is at [72.9km 21.5kn], and it moves
with a constant velocity of 0.3km/s along a -150°
line to the x -axis. The target has the lateral maneu-
vers as shown in Fig. 4, and the corresponding target
motion is illustrated in Fig. 5. For both axes, the stan-
dard deviation of the zero mean white Gaussian
measurement noise is 0.5kn and that of a random
acceleration noise is 0.001 km/s”. The standard devia-
tions of the bias filter and the bias-free filter for a
two-stage Kalman estimator are 0.01 kbn/s* and
0.001 km/s*, respectively. The switching probability
matrix of the sub-model, ¢, , was taken by

nm >

Table 1. The initial parameters of the GA.

Parameters Values
Maximum Generation 200
Maximum Rule Number 50
Population Size 500
Crossover Rate 0.9
Mutation Rate 0.01
A 0.75

Table 2. The fuzzy rules identified for the accelera-
tion input u, = 0.001km/s" .

no. of|  parameters identified for w, =0.001km/s*

rule C O C2 (&) w

1 0.9088 | 0.1426| 0.2152} 3.1791| 0.3984<10°

1.0168| 0.0662 | 1.2639| 3.2672| 0.3477x10°

1.3824 | 1.5158[-0.4991 0.5773| 0.1040> 10

-0.1311{ 0.5958 | 1.0934| 0.5674| 0.1057 < 10’
1.4090 | 0.0295| 0.2804 | 2.0269| 0.3014 x 10°

-1.2545| 0.1582| 1.1365| 0.2148 | 0.2836<10°
0.3876| 0.0198 | 1.4585 | 0.0809 | 0.2605 < 10’

~N | | R W
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Table 3. The fuzzy rules identified for the accelera-
tion input u, =0.01km/s" .

no. of parameters identified for u, = 0.01km/s*

rule e o o o y
1] 0.1197 | 0.0796 |-1.5367 | 0.7641 0‘131303
2 |-0.0836 | 1.1625 | -0.2359 | 0.5158 0"§°1703
3| 08457 | 09523 | -0.7970 | 2.5884 | 1202
4 | 1.4667 | 0.0370 |-0.8562 | 1.6529 0'1281603
5| 07429 | 23806 | -0.6072 | 2.5407 | 120
6 |-1.2103| 03070 | -1.0827 | 2.2768 | *115C
7 1-0.2791 | 0.0920 | -1.5338 | 1.9053 0'1>‘<81503
8 [-0.5224 | 27356 |-0.8323 | 27159 | 1208,
9 | 0.1966 | 1.9984 |-1.1328 | 1.0014 0-15;503

Table 4. The fuzzy rules identified for the accelera-
tion input u, =0.1km/s* .

no. of parameters identified for u, =0.1km/s>
rule o o o P ”
| 1.5042 | 2.4868 [-0.2898 | 0.5533 {0.0102
2 3.5042 | 0.8063 | 0.6460| 0.6212 |0.0047
3 |-1.4802] 0.3118 | 0.2204| 3.1265 |0.0044
4 4.0089 | 0.4257 |-1.6225| 0.7013 |0.0098
5 4.1174 | 0.8075 | 0.5442| 2.7186 |0.0094
6 43489 1.0112 |-0.1821] 3.0504 |0.0101
7 3.7746 | 0.1013 |-1.2030| 0.7165 |0.0053
0.97 if n=m
Pom = {1 ;\?_917 otherwise ’ (16)

where N means the number of sub-models. Assum-
ing that the first sub-model is nearer the motion
model of the target, the initial model probability for
sub-models was selected by

if m=1

0.6
H,(0)= ﬂ otherwise, an
N-1

The acceleration levels of the sub-models for the
AIMM algorithm are shown in Table 5, where
AIMM3 and AIMMS mean the AIMM algorithm with
3 and 5 sub-models, respectively. These values are
determined in consideration of the properties of the
target maneuvers.

T 1

— Acceleration input (x-axis)

0.08
0.04
Q.02

] S—

Acceleration input

-0.02

D.04

-0.06

P DU U N SN N SN SR S
0 20 40 60 80 100 120 140 160 180 200
time

Fig. 4. The acceleration inputs ( km/s*).

10 .' .' i i
0 10 20 30 40 50 60 70 =]
X, km

Fig. 5. The motion of incoming anti-ship missile.

Table 5. The acceleration levels for the AIMM algo-

rithm.
The acceleration levels for
Configuration sub-models (km/s”)
hy my, ms my, ms
1| AIMM3 atky | atk)£0.04 .
2 AIMMS ak) a(k)+0.02 a(k)+0.04

Comparisons between the performances of two al-
gorithms are made on the basis of the normalized po-
sition and velocity errors, P(k) and V,(k), as fol-

lows:

IS 1 (= # R0+ (6 (-5 00

"I )= 2L () + (' () - 2L (k)]
i=1 ]
(18)

P, (k)=

V3 10 0= k)2 + 0 (0= ()]

U3 L0 G0, (k) + () ()=, )],
(19)

V., (k)=
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T T T T T T 1) I I

: : : : : |- AMMI

] S S S o IV i
| H . H H e Proposed rnethod

P U T SR SN R S S S S
20 40 60 80 100 120 140 160 180 200
scan number

(a) Normalized position error.

- AIMMS
: H . H H o AlnMS
[ S S R s oevossioeoens e Proposed method

Velk)

0 20 40 60 80 100 120 140 160 180 200
scan number

(b) Normalized velocity error.

Fig. 6. The simulation results.

Table 6. The numerical results.

Configurations No. of sub- —The fesult EPU
me
models ¢ ¢ (sec.)
1 |AIMM3 3 0.6633 | 0.1818 | 65.91
AIMMS5 5 0.6593 | 0.1784 |122.05
Proposed 3 05527 0.1063 |146.86
method

where x'(k), y'(k) andX'(k), $'(k) are the true
and estimated positions of the target, respectively,
andz,, z| is the measured position of the target.

vilk), vik) and V' (k), V.(k) are the true and

estimated velocities of the target, and v’ (k) ,

mx

v, (k) are the velocities corresponding to the meas-
ured position of the target. To compare the perform-

ance of two algorithms numerically, the following
equations are used.

NAG)

é’pZZkHiS, 3 (20)
RAC

4,,=——Zk:’ o ), 1)

S

where ', and ¢ are the averages of the normal-

ized position and velocity errors, P, (k) andV,(k),

over the total number of scan S .

The simulation results and the numerical results
over 100 runs are shown in Fig. 6 and Table 6. As
shown in Fig. 6, the proposed method had much bet-
ter tracking performance than the AIMM algorithm.
Table 6 indicates that the normalized position and ve-
locity errors of the proposed method were reduced by
16.67% and 41.53%, respectively, compared with the
AIMM3 and 16.17% and 40.42%, respectively, com-
pared with AIMMS. Although its CPU time over 100
runs was increased to some extent, we could over-
come the mathematical limits of the conventional
methods.

5. CONCLUSIONS

In this paper, we have developed the GA-based
IMM method as an intelligent tracking method for a
maneuvering target. In the proposed method, a sub-
model was represented as a fuzzy system to compute
the time-varying variances of the overall process
noises of a new piecewise constant white acceleration
model and the GA was applied to optimize this fuzzy
system for a certain maneuver input. Multiple models
were then composed of these fuzzy models. Com-
pared to the IMM algorithm and the AIMM algorithm,
the proposed method has three advantages. First,
unlike an IMM algorithm, no sub-models predefined
in consideration of the property of maneuver are re-
quired. Secondly, unlike an AIMM algorithm, no
estimation of the target acceleration or adjustment for
different acceleration levels in accordance with the
property of maneuver is required to construct sub-
models. Thirdly, although the property of the maneu-
ver is unknown, the proposed method can be applied
if the maneuver is within the assumed maximum
acceleration input. The simulation results have shown
that the proposed method has much better tracking
performance than the AIMM algorithm.
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