• Title/Summary/Keyword: Multiple Missions

Search Result 65, Processing Time 0.03 seconds

A War-time Engineering Equipment's Assignment and Operation Model (전시 공병장비 할당 및 운용 모형)

  • Jae-Hyeong Lee;Moon-Gul Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.294-303
    • /
    • 2023
  • During wartime, the operation of engineering equipment plays a pivotal role in bolstering the combat prowess of military units. To fully harness this combat potential, it is imperative to provide efficient support precisely when and where it is needed most. While previous research has predominantly focused on optimizing equipment combinations to expedite individual mission performance, our model considers routing challenges encompassing multiple missions and temporal constraints. We implement a comprehensive analysis of potential wartime missions and developed a routing model for the operation of engineering equipment that takes into account multiple missions and their respective time windows of required start and completion time. Our approach focused on two primary objectives: maximizing overall capability and minimizing mission duration, all while adhering to a diverse set of constraints, including mission requirements, equipment availability, geographical locations, and time constraints.

Variable Length Pseudo Noise (PN) Ranging System for Satellite Multiple Missions (위성 다중임무 수행을 위한 가변길이 의사 잡음 레인징 시스템)

  • Jeong, Jinwoo;Kim, Sanggoo;Yoon, Dongweon;Lim, Won-Gyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.14-21
    • /
    • 2013
  • In satellite operations and space exploration missions, a ranging is one of the most essential technologies to get its navigational information of space probes. Recently, the importance of cross-support between space agencies is increasing for more fine performance of space mission. For cross-support, mutually compatible ranging system between space agencies is recommended. For these reasons, the consultative committee for space data systems (CCSDS) recommends pseudo noise (PN) ranging as a digital standard ranging system. The length of PN sequence in CCSDS standard is proper for deep space missions, however, it is too long to use for ranging in near earth missions. In this paper, we propose Variable Length PN sequence schemes suitable for ranging of near earth satellites, such as low-earth orbit (LEO), medium-earth orbit (MEO) and Geostationary orbit (GEO). Therefore we propose variable length PN sequence ranging system including CCSDS standard for multiple missions.

Operational Availability Analysis of KOMPSAT TTC System (KOMPSAT 관제시스템의 운용가용도 분석)

  • 장대익;고지환이성팔김대영
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.155-158
    • /
    • 1998
  • The KOMPSAT system incorporates multiple missions designed to provide various applications in the field of Korean peninsula observation covering land, sea and coastal zones. The missions are Korea cartography (1:25,000 scale maps of the Korean peninsula), biological oceanography and science instrument accommodation. The operational availability of KOMPSAT TTC system should be predicted more accurately because its failure has a significant influence on satellite command and tracking and on satellite data collection. In this paper, system availability structure of KOMPSAT TTC system are made and availability of KOMPSAT TTC system is analyzed aspect to the system operation in accordance with logistic condition.

  • PDF

Mission Path Planning to Maximize Survivability for Multiple Unmanned Aerial Vehicles based on 3-dimensional Grid Map (3차원 격자지도 기반 생존성 극대화를 위한 다수 무인 항공기 임무경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.365-375
    • /
    • 2012
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for humans. UAVs are currently employed in many military missions and a number of civilian applications. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$_PGA (A-star with Post Smoothing_Parallel Genetic Algorithm) for Multiple UAVs's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and MTSP (Multiple Traveling Salesman Problem). After transforming MRPP into Shortest Path Problem (SPP),$A^*PS$_PGA applies a path planning for multiple UAVs.

Time-Efficient Trajectory Planning Algorithms for Multiple Mobile Robots in Nuclear/Chemical Reconnaissance System (화방 정찰 체계에서의 다수의 이동 로봇을 위한 시간 효율적인 경로 계획 알고리즘에 대한 연구)

  • Kim, Jae-Sung;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1047-1055
    • /
    • 2009
  • Since nuclear and chemical materials could damage people and disturb battlefield missions in a wide region, nuclear/chemical reconnaissance systems utilizing multiple mobile robots are highly desirable for rapid and safe reconnaissance. In this paper, we design a nuclear/chemical reconnaissance system including mobile robots. Also we propose time-efficient trajectory planning algorithms using grid coverage and contour finding methods for reconnaissance operation. For grid coverage, we performed in analysis on time consumption for various trajectory patterns generated by straight lines and arcs. We proposed BCF (Bounded Contour Finding) and BCFEP (Bounded Contour Finding with Ellipse Prediction) algorithms for contour finding. With these grid coverage and contour finding algorithms, we suggest trajectory planning algorithms for single, two or four mobile robots. Various simulations reveal that the proposed algorithms improve time-efficiency in nuclear/chemical reconnaissance missions in the given area. Also we conduct basic experiments using a commercial mobile robot and verify the time efficiency of the proposed contour finding algorithms.

Status and Prospects of Marine Wind Observations from Geostationary and Polar-Orbiting Satellites for Tropical Cyclone Studies

  • Nam, SungHyun;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.305-316
    • /
    • 2018
  • Satellite-derived sea surface winds (SSWs) and atmospheric motion vectors (AMVs) over the global ocean, particularly including the areas in and around tropical cyclones (TCs), have been provided in a real-time and continuous manner. More and better information is now derived from technologically improved multiple satellite missions and wind retrieving techniques. The status and prospects of key SSW products retrieved from scatterometers, passive microwave radiometers, synthetic aperture radar, and altimeters as well as AMVs derived by tracking features from multiple geostationary satellites are reviewed here. The quality and error characteristics, limitations, and challenges of satellite wind observations described in the literature, which need to be carefully considered to apply the observations for both operational and scientific uses, i.e., assimilation in numerical weather forecasting, are also described. Additionally, on-going efforts toward merging them, particularly for monitoring three-dimensional TC wind fields in a real-time and continuous manner and for providing global profiles of high-quality wind observations with the new mission are introduced. Future research is recommended to develop plans for providing more and better SSW and AMV products in a real-time and continuous manner from existing and new missions.

Development of Operation System for Network of Multiple UAVs (복수 무인기 네트워크 통합 운영 시스템 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Kim, Sung-Su;Ryoo, Chang-Kyung;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1042-1051
    • /
    • 2011
  • In this paper, a total operating environment equipped with onboard wireless communication systems and ground-based mission control systems is proposed for simultaneous operation of multiple UAVs. A variety of operating structures are studied and classified systematically based on types and usages of the components. For each operating system, the strength, weakness and reliability aspects are investigated. Based on these results, a proper operating system configuration is determined and components are developed for mission formation flight. Proposed system can make a formation flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperate several missions.

Selective Squib Activation and Check Circuit Design for Safeguarded Multi-Phase Missions (안전조치 포함 다단계 임무 수행을 위한 선택적 스퀴브 도화 및 점검 회로 설계)

  • Lee, Heoncheol;Kwon, Yongsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.684-696
    • /
    • 2018
  • The mission in missile systems can be conducted with multiple phases according to the characteristics of the systems and the targets. The safeguarded multi-phase mission includes a safeguarded phase before launch for considering the safety of operators in unexpected squib activation. However, the safeguard function should be disabled after launch to complete the mission. Therefore, the squib system needs to be selectively activated according to the phases. This paper presents a selective squib activation and check circuit design for safeguarded multi-phase missions in missile systems. The presented circuit design was implemented with various electronic components including a field-programmable gate array(FPGA). Its functions and performance were validated by both many ground tests and several flight tests.

Mission Operations of the KOMPSAT-1 satellite

  • Kim, Hae-Dong;Kim, Eun-Kyou;Park, Hae-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.92.5-92
    • /
    • 2001
  • The KOMPSAT-1(Korea Multi-Purpose Satellite-1) is the first multi-purpose satellite funded by Korean government for the purpose of remote sensing and scientific data gathering in KOREA. It has successfully achieved its own mission since Dec. 21, 1999. This paper provides an overview of the KOMPSAT-1 missions and addresses the nominal mission planning and operation flow. This paper also describes the routine operational orbit determination and orbit prediction process using GPS navigation solution data. Meanwhile, some problems due to inexperience of the multiple mission operations during LEOP(Launch & Early Orbit Phase) and early normal mission were investigated. Then, resolutions that include the development of new mission planning tool are addressed. The KOMPSAT-1´s missions become more complicated rather than its Initially designed ones. In order to accomplish ...

  • PDF

Integrated Simulation Environment for Heterogeneous Unmanned Vehicle using ROS and Pixhawk (ROS와 픽스호크를 활용한 이기종 무인 이동체간 통합 시뮬레이션 환경 구축)

  • Kim, Hyeong-Min;Lee, Dae-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • Cooperative systems among various unmanned vehicles are widely used in various field and emerging. Unmanned vehicles are able to operate various missions without operator onboard and they are highly stable. Collaborative work of multiple unmanned vehicles is emphasized due to the difficulty of recent missions such as SEAD (Suppression of the Enemy Air Defenses), MUSIC (Manned Unmanned Systems Integration Capability), goldentime in the rescue mission. In this study, ROS and Pixhawk were proposed as a method of construction of a collaboration system and framework for an integrated simulation environment for heterogeneous unmanned vehicles is proposed. Totally 5 unmanned vehicles were set for the simulation for the observation of illegal fishing boats. This paper shows the feasibility of the cooperative system using ROS and Pixhawk through the simulation and the experiment.