• Title/Summary/Keyword: Multiple Matrix

Search Result 916, Processing Time 0.031 seconds

Secure Outsourced Computation of Multiple Matrix Multiplication Based on Fully Homomorphic Encryption

  • Wang, Shufang;Huang, Hai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5616-5630
    • /
    • 2019
  • Fully homomorphic encryption allows a third-party to perform arbitrary computation over encrypted data and is especially suitable for secure outsourced computation. This paper investigates secure outsourced computation of multiple matrix multiplication based on fully homomorphic encryption. Our work significantly improves the latest Mishra et al.'s work. We improve Mishra et al.'s matrix encoding method by introducing a column-order matrix encoding method which requires smaller parameter. This enables us to develop a binary multiplication method for multiple matrix multiplication, which multiplies pairwise two adjacent matrices in the tree structure instead of Mishra et al.'s sequential matrix multiplication from left to right. The binary multiplication method results in a logarithmic-depth circuit, thus is much more efficient than the sequential matrix multiplication method with linear-depth circuit. Experimental results show that for the product of ten 32×32 (64×64) square matrices our method takes only several thousand seconds while Mishra et al.'s method will take about tens of thousands of years which is astonishingly impractical. In addition, we further generalize our result from square matrix to non-square matrix. Experimental results show that the binary multiplication method and the classical dynamic programming method have a similar performance for ten non-square matrices multiplication.

MULTIPLE OUTLIER DETECTION IN LOGISTIC REGRESSION BY USING INFLUENCE MATRIX

  • Lee, Gwi-Hyun;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.4
    • /
    • pp.457-469
    • /
    • 2007
  • Many procedures are available to identify a single outlier or an isolated influential point in linear regression and logistic regression. But the detection of influential points or multiple outliers is more difficult, owing to masking and swamping problems. The multiple outlier detection methods for logistic regression have not been studied from the points of direct procedure yet. In this paper we consider the direct methods for logistic regression by extending the $Pe\tilde{n}a$ and Yohai (1995) influence matrix algorithm. We define the influence matrix in logistic regression by using Cook's distance in logistic regression, and test multiple outliers by using the mean shift model. To show accuracy of the proposed multiple outlier detection algorithm, we simulate artificial data including multiple outliers with masking and swamping.

Motion Analysis of Two Floating Platforms with Mooring and Hawser Lines in Tandem Moored Operation by Combined Matrix Method and Separated Matrix Method

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.1-15
    • /
    • 2005
  • The motion behaviors including hydrodynamic interaction and mechanical coupling effects on multiple-body floating platforms are simulated by using a time domain hull/mooring/riser coupled dynamics analysis program. The objective of this study is to evaluate off-diagonal hydrodynamic interaction effects and mechanical coupling effects on tandem moored FPSO and shuttle taker motions. In the multiple-body floating platforms interaction, hydrodynamic coupling effects with waves and mechanical coupling effects through the connectors should be considered. Thus, in this study, the multiple-body platform motions are calculated by Combined Matrix Method (CMM) as well as Separated Matrix Method (SMM). The advantage of the combined matrix method is that it can include all the 6Nx6N full hydrodynamic and mechanical interaction effects among N bodies. Whereas, due to the larger matrix size, the calculation time of Combined Matrix Method (CMM) is longer than the Separated Matrix Method (SMM). On the other hand, Separated Matrix Method (SMM) cannot include the off-diagonal 6x6 hydrodynamic interaction coefficients although it can fully include mechanical interactions among N bodies. To evaluate hydrodynamic interaction and mechanical coupling effects, tandem moored FPSO and shuttle tanker is simulated by Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The calculation results give a good agreement between Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The results show that the Separated Matrix Method (SMM) is more efficient for tandem moored FPSO and shuttle tanker. In the numerical calculation, the hydrodynamic coefficients are calculated from a 3D diffraction/radiation panel program WAMIT, and wind and current forces are generated by using the respective coefficients given in the OCIMF data sheet.

Proposal of Multiple Blocking and Its Efficiency in Matrix Operations

  • Tateno, Satoshi;Shigehara, Takaomi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.619-622
    • /
    • 2002
  • In this paper, we propose a new blocking method, multiple blocking, and examine the efficiency of the method in basic matrix operations. In the best case for the matrix multiplication C=AB+C, the multiple blocking improves the performance by more than 10%, compared to the conventional single blocking method.

  • PDF

Minimum Distance based Precoder Design for General MIMO Systems using Gram Matrix

  • Chen, Zhiyong;Xu, Xiaodong
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.634-646
    • /
    • 2015
  • Assuming perfect channel state information (CSI) at the transmitter and receiver, the optimization problem of maximizing the minimum Euclidean distance between two received signals by a linear precoder is considered for multiple-input multiple-output (MIMO) systems with arbitrary dimensions and arbitraryary quadrature amplitude modulation (QAM) input. A general precoding framework is first presented based on the Gram matrix, which is shown for 2-dimensional (2-D) and 3-dimensional (3-D) MIMO systems when employing the ellipse expanding method (EEM). An extended precoder for high-dimensional MIMO system is proposed following the precoding framework, where the Gram matrix for high-dimensional precoding matrix can be generated through those chosen from 2-D and 3-D results in association with a permutation matrix. A complexity-reduced maximum likelihood detector is also obtained according to the special structure of the proposed precoder. The analytical and numerical results indicate that the proposed precoder outperforms the other precoding schemes in terms of both minimum distance and bit error rate (BER).

Numerical solution for multiple confocal elliptic dissimilar cylinders

  • Chen, Y.Z.
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.203-211
    • /
    • 2017
  • This paper provides a numerical solution for multiple confocal elliptic dissimilar cylinders. In the problem, the inner elliptic notch is under the traction free condition. The medium is composed of many confocal elliptic dissimilar cylinders. The transfer matrix method is used to study the continuity condition for the stress and displacement along the interfaces. Two cases, or the infinite matrix case and the finite matrix case, are studied in this paper. In the former case, the remote tension is applied in y- direction. In the latter case, the normal loading is applied along the exterior elliptic contour. For two cases, several numerical results are provided.

Estimation of the Sound Absorption Performance for Multiple Layer Perforated Plate Systems by Transfer Matrix Method (전달행렬법을 이용한 다중 다공판 시스템의 흡음성능 예측)

  • 이동훈;허성춘;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.709-716
    • /
    • 2002
  • A practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method for various porosity and spacing of the perforated plate. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients agree well with the measured values.

Prediction of the Sound Absorption Coefficient for Multiple Perforated-Plate Sound Absorbing System by Transfer Matrix Method (전달행렬법에 의한 다중 다공판 흡음시스템의 흡음계수 예측)

  • 허성춘;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.653-658
    • /
    • 2001
  • In this study, a new practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. In order to validate the proposed method, the absorption coefficients calculated by transfer matrix method for single perforated plate were first compared with the absorption coefficients measured by SWR method according to different porosity, hole diameter, and thickness of the perforated plate. Based on the comparison results, transfer matrix method was further applied to double and triple perforated plates to evaluate the absorption coefficients. The experimental results showed that the absorption coefficients from transfer matrix method generally agreed well with the corresponding absorption coefficients from SWR method. However, due to the limitations of the impedance model used in this study, the measured values were differed with the calculated values for small porosity, hole diameter, and thickness in size of the perforated plate indicating the need of impedance model development for multiple perforated-plate sound absorbing system covering wide ranges of porosity, hole diameter, and thickness of the perforated plate.

  • PDF

$S^{2}MMSE$ Precoding for Multiuser MIMO Broadcast Channels (다중 사용자 MIMO 방송 채널을 위한 $S^{2}MMSE$ 프리코딩)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1185-1190
    • /
    • 2008
  • In this paper, we propose an simplified successive minimum mean square error ($S^{2}MMSE$) algorithm that can simplify the computational complexity for precoding matrix generation in the successive minimum mean square error (SMMSE) precoding method, which is adopted as a multiuser multiple-input multiple-output (MU-MIMO) precoding technique in the IST (information society technologies)-WINNER (wireless world initiative new radio) project. The original algorithm generates the precoding matrix by calculating all individual precoding vectors with each requiring its own MMSE nulling matrix, over all receive antennas for all users. In contrast, this proposed algorithm first calculates the MMSE nulling matrix for each user, and then calculates all precoding vectors for respective receive antennas of the corresponding user by using the identical MMSE nulling matrix, in which only a simple matrix-vector multiplication is required for each vector. Consequently, it can simplify significantly the computational complexity to generate a precoding matrix for SMMSE precoding.