• 제목/요약/키워드: Multiple Linear

검색결과 3,052건 처리시간 0.034초

다중선형회귀모델을 이용한 움직임 추정방법 (Motion estimation method using multiple linear regression model)

  • 김학수;임원택;이재철;이규원;박규택
    • 전자공학회논문지S
    • /
    • 제34S권10호
    • /
    • pp.98-103
    • /
    • 1997
  • Given the small bit allocation for motion information in very low bit-rate coding, motion estimation using the block matching algorithm(BMA) fails to maintain an acceptable level of prediction errors. The reson is that the motion model, or spatial transformation, assumed in block matching cannot approximate the motion in the real world precisely with a small number of parameters. In order to overcome the drawback of the conventional block matching algorithm, several triangle-based methods which utilize triangular patches insead of blocks have been proposed. To estimate the motions of image sequences, these methods usually have been based on the combination of optical flow equation, affine transform, and iteration. But the compuataional cost of these methods is expensive. This paper presents a fast motion estimation algorithm using a multiple linear regression model to solve the defects of the BMA and the triange-based methods. After describing the basic 2-D triangle-based method, the details of the proposed multiple linear regression model are presented along with the motion estimation results from one standard video sequence, representative of MPEG-4 class A data. The simulationresuls show that in the proposed method, the average PSNR is improved about 1.24 dB in comparison with the BMA method, and the computational cost is reduced about 25% in comparison with the 2-D triangle-based method.

  • PDF

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

MLR & ANN approaches for prediction of compressive strength of alkali activated EAFS

  • Ozturk, Murat;Cansiz, Omer F.;Sevim, Umur K.;Bankir, Muzeyyen Balcikanli
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.559-567
    • /
    • 2018
  • In this study alkali activation of Electric Arc Furnace Slag (EAFS) is studied with a comprehensive test program. Three different silicate moduli (1-1,5-2), three different sodium concentrations (4%-6%-8%) for each silicate module, two different curing conditions (45%-98% relative humidity) for each sodium concentration, two different curing temperatures ($400^{\circ}C-800^{\circ}C$) for each relative humidity condition and two different curing time (6h-12h) for each curing temperature variables are selected and their effects on compressive strength was evaluated then regression equations using multiple linear regressions methods are fitted. And then to select the best regression models confirm with using the variables, the regression models compared between itself. An Artificial Neural Network (ANN) models that use silicate moduli, sodium concentration, relative humidity, curing temperature and curing time variables, are formed. After the investigation of these ANN models' results, ANN and multiple linear regressions based models are compared with each other. After that, an explicit formula is developed with values of the ANN model. As a result of this study, the fluctuations of data set of the compressive strength were very well reflected using both of the methods, multiple linear regression with quadratic terms and ANN.

다목적(多目的) 산림경영계획(山林經營計劃)을 위한 선형계획법(線型計劃法)의 응용(應用) (An Application of Linear Programming to Multiple-Use Forest Management Planning)

  • 박은식;정주상
    • 한국산림과학회지
    • /
    • 제88권2호
    • /
    • pp.273-281
    • /
    • 1999
  • 이 연구에서는 춘천국유림관리소 관할인 가리산 일대의 산림을 대상으로 다목적 산림경영을 추구하기 위하여 최적수확계획의 수립에 선형계획법을 적용하였다. 지리적 특성에 따라 연구대상지역을 4개의 경영단위 또는 유역으로 구분하였으며, 비감소수확, 현존 임분의 갱신시기, % 수확면적, 토사유출량, 목재생산량, 탄소저장량을 조절하기 위한 제약조건을 포함하였으며, 계획기간말의 임상구조 및 임분 갱신을 위한 수종선택 조건을 경영단위별로 적용하였다. 선형계획문제의 수식화에는 모델 I과 모델 II를 적용하였으며, 수식모형과 경영대안에 따라 최적해들을 비교검토하였다.

  • PDF

근적외선을 이용한 사과의 당도예측 (I) - 다중회귀모델 - (Predicting the Soluble Solids of Apples by Near Infrared Spectroscopy (I) - Multiple Linear Regression Models -)

  • 이강진;;;노상하
    • Journal of Biosystems Engineering
    • /
    • 제23권6호
    • /
    • pp.561-570
    • /
    • 1998
  • The MLR(Multiple Linear Regression) models to estimate soluble solids content non-destructively were presented to make a selection of optimal photosensor utilized to measure the soluble solids content of apples. Visible and NIR absorbance in the 400 to 2498 nanometer(nm) wavelength region, soluble solids content(sugar content), hardness, and weight were measured for 400 apples(gala). Spectrophotometer with fiber optic probe was utilized for spectrum measurement and digital refractometer was used for soluble solids content. Correlation between absorbance spectrum and soluble solids content was analyzed to pick out the optimal wavelengths and to develop corresponding prediction model by means of MLR. For the coefficient of determination($R^2$) to be over 0.92, the MLR models out of the original absorbance were built based on 7 wavelengths of 992, 904, 1096, 1032, 880, 824, 1048nm, and the ones of the second derivative absorbance based on 5 wavelengths of 784, 1056, 992, 808, 872nm. The best model of the second derivative absorbance spectrum had $R^2$=0.91, bias= -0.02bx, SEP=0.28bx for unknown samples.

  • PDF

MOISTURE CONTENT MEASUREMENT OF POWDERED FOOD USING RF IMPEDANCE SPECTROSCOPIC METHOD

  • Kim, K. B.;Lee, J. W.;S. H. Noh;Lee, S. S.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to measure the moisture content of powdered food using RF impedance spectroscopic method. In frequency range of 1.0 to 30㎒, the impedance such as reactance and resistance of parallel plate type sample holder filled with wheat flour and red-pepper powder of which moisture content range were 5.93∼-17.07%w.b. and 10.87 ∼ 27.36%w.b., respectively, was characterized using by Q-meter (HP4342). The reactance was a better parameter than the resistance in estimating the moisture density defined as product of moisture content and bulk density which was used to eliminate the effect of bulk density on RF spectral data in this study. Multivariate data analyses such as principal component regression, partial least square regression and multiple linear regression were performed to develop one calibration model having moisture density and reactance spectral data as parameters for determination of moisture content of both wheat flour and red-pepper powder. The best regression model was one by the multiple linear regression model. Its performance for unknown data of powdered food was showed that the bias, standard error of prediction and determination coefficient are 0.179% moisture content, 1.679% moisture content and 0.8849, respectively.

  • PDF

다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구 (Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data)

  • 이용관;정충길;조영현;김성준
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.11-20
    • /
    • 2017
  • This study is to estimate the spatial soil moisture using multiple linear regression model (MLRM) and 15 minutes interval Land Surface Temperature (LST) data of Communication, Ocean and Meteorological Satellite (COMS). For the modeling, the input data of COMS LST, Terra MODIS Normalized Difference Vegetation Index (NDVI), daily rainfall and sunshine hour were considered and prepared. Using the observed soil moisture data at 9 stations of Automated Agriculture Observing System (AAOS) from January 2013 to May 2015, the MLRMs were developed by twelve scenarios of input components combination. The model results showed that the correlation between observed and modelled soil moisture increased when using antecedent rainfalls before the soil moisture simulation day. In addition, the correlation increased more when the model coefficients were evaluated by seasonal base. This was from the reverse correlation between MODIS NDVI and soil moisture in spring and autumn season.

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.

IEEE 802.15.4a CSS를 위한다중 선형 Chirp 전송 기법 (Multiple Linear Chirp Based Transmission Scheme for IEEE 802.15.4a Chirp Spread Spectrum)

  • 김광열;이승우;김용신;이재생;김진영;신요안
    • 한국통신학회논문지
    • /
    • 제40권10호
    • /
    • pp.1937-1939
    • /
    • 2015
  • Chirp 기반의 전송 기법에서 Cross-coherence는 전송 성능에 영향을 미치며, 전송 성능의 향상을 위해서는 Cross-coherence가 적은 Chirp 조합을 사용해야 한다. 이에 본 논문은 IEEE 802.15.4a CSS (Chirp Spread Spectrum)의 전송 성능을 향상시키기 위한 Chirp 조합으로 다중 선형 Chirp 기법을 제안한다. 모의실험 결과, 제안된 기법인 다중 선형 Chirp 기법이 단일 선형 Chirp 기법 보다 Cross-coherence가 적은 부분이 있음을 확인하였고, 이 조합을 이용하여 전송하였을 때 전송 성능이 향상됨을 확인하였다.

디스플레이 FAB 생산능력 예측 개선 사례 연구 (A Case Study on the Improvement of Display FAB Production Capacity Prediction)

  • 길준필;최진영
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.137-145
    • /
    • 2020
  • Various elements of Fabrication (FAB), mass production of existing products, new product development and process improvement evaluation might increase the complexity of production process when products are produced at the same time. As a result, complex production operation makes it difficult to predict production capacity of facilities. In this environment, production forecasting is the basic information used for production plan, preventive maintenance, yield management, and new product development. In this paper, we tried to develop a multiple linear regression analysis model in order to improve the existing production capacity forecasting method, which is to estimate production capacity by using a simple trend analysis during short time periods. Specifically, we defined overall equipment effectiveness of facility as a performance measure to represent production capacity. Then, we considered the production capacities of interrelated facilities in the FAB production process during past several weeks as independent regression variables in order to reflect the impact of facility maintenance cycles and production sequences. By applying variable selection methods and selecting only some significant variables, we developed a multiple linear regression forecasting model. Through a numerical experiment, we showed the superiority of the proposed method by obtaining the mean residual error of 3.98%, and improving the previous one by 7.9%.