• 제목/요약/키워드: Multiple Inputs Deep Neural Networks

검색결과 4건 처리시간 0.016초

Multiple Inputs Deep Neural Networks for Bone Age Estimation Using Whole-Body Bone Scintigraphy

  • Nguyen, Phap Do Cong;Baek, Eu-Tteum;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kang, Sae-Ryung;Min, Jung-Joon
    • 한국멀티미디어학회논문지
    • /
    • 제22권12호
    • /
    • pp.1376-1384
    • /
    • 2019
  • The cosmetic and behavioral aspects of aging have become increasingly evident over the years. Physical aging in people can easily be observed on their face, posture, voice, and gait. In contrast, bone aging only becomes apparent once significant bone degeneration manifests through degenerative bone diseases. Therefore, a more accurate and timely assessment of bone aging is needed so that the determinants and its mechanisms can be more effectively identified and ultimately optimized. This study proposed a deep learning approach to assess the bone age of an adult using whole-body bone scintigraphy. The proposed approach uses multiple inputs deep neural network architectures using a loss function, called mean-variance loss. The data set was collected from Chonnam National University Hwasun Hospital. The experiment results show the effectiveness of the proposed method with a mean absolute error of 3.40 years.

Faults detection and identification for gas turbine using DNN and LLM

  • Oliaee, Seyyed Mohammad Emad;Teshnehlab, Mohammad;Shoorehdeli, Mahdi Aliyari
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.393-403
    • /
    • 2019
  • Applying more features gives us better accuracy in modeling; however, increasing the inputs causes the curse of dimensions. In this paper, a new structure has been proposed for fault detecting and identifying (FDI) of high-dimensional systems. This structure consist of two structure. The first part includes Auto-Encoders (AE) as Deep Neural Networks (DNNs) to produce feature engineering process and summarize the features. The second part consists of the Local Model Networks (LMNs) with LOcally LInear MOdel Tree (LOLIMOT) algorithm to model outputs (multiple models). The fault detection is based on these multiple models. Hence the residuals generated by comparing the system output and multiple models have been used to alarm the faults. To show the effectiveness of the proposed structure, it is tested on single-shaft industrial gas turbine prototype model. Finally, a brief comparison between the simulated results and several related works is presented and the well performance of the proposed structure has been illustrated.

딥러닝의 모형과 응용사례 (Deep Learning Architectures and Applications)

  • 안성만
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.127-142
    • /
    • 2016
  • 딥러닝은 인공신경망(neural network)이라는 인공지능분야의 모형이 발전된 형태로서, 계층구조로 이루어진 인공신경망의 내부계층(hidden layer)이 여러 단계로 이루어진 구조이다. 딥러닝에서의 주요 모형은 합성곱신경망(convolutional neural network), 순환신경망(recurrent neural network), 그리고 심층신뢰신경망(deep belief network)의 세가지라고 할 수 있다. 그 중에서 현재 흥미로운 연구가 많이 발표되어서 관심이 집중되고 있는 모형은 지도학습(supervised learning)모형인 처음 두 개의 모형이다. 따라서 본 논문에서는 지도학습모형의 가중치를 최적화하는 기본적인 방법인 오류역전파 알고리즘을 살펴본 뒤에 합성곱신경망과 순환신경망의 구조와 응용사례 등을 살펴보고자 한다. 본문에서 다루지 않은 모형인 심층신뢰신경망은 아직까지는 합성곱신경망 이나 순환신경망보다는 상대적으로 주목을 덜 받고 있다. 그러나 심층신뢰신경망은 CNN이나 RNN과는 달리 비지도학습(unsupervised learning)모형이며, 사람이나 동물은 관찰을 통해서 스스로 학습한다는 점에서 궁극적으로는 비지도학습모형이 더 많이 연구되어야 할 주제가 될 것이다.

Few-Shot Image Synthesis using Noise-Based Deep Conditional Generative Adversarial Nets

  • Msiska, Finlyson Mwadambo;Hassan, Ammar Ul;Choi, Jaeyoung;Yoo, Jaewon
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.79-87
    • /
    • 2021
  • In recent years research on automatic font generation with machine learning mainly focus on using transformation-based methods, in comparison, generative model-based methods of font generation have received less attention. Transformation-based methods learn a mapping of the transformations from an existing input to a target. This makes them ambiguous because in some cases a single input reference may correspond to multiple possible outputs. In this work, we focus on font generation using the generative model-based methods which learn the buildup of the characters from noise-to-image. We propose a novel way to train a conditional generative deep neural model so that we can achieve font style control on the generated font images. Our research demonstrates how to generate new font images conditioned on both character class labels and character style labels when using the generative model-based methods. We achieve this by introducing a modified generator network which is given inputs noise, character class, and style, which help us to calculate losses separately for the character class labels and character style labels. We show that adding the character style vector on top of the character class vector separately gives the model rich information about the font and enables us to explicitly specify not only the character class but also the character style that we want the model to generate.