• Title/Summary/Keyword: Multiple Frames

Search Result 279, Processing Time 0.024 seconds

Performance Analysis of Frame Synchronization and Structure Detection Utilizing Multiple Frames of the DVB-S2 Satellite Broadcasting System (다수개 프레임을 활용한 DVB-S2 위성방송 시스템의 프레임 동기 및 구조 검출 성능 분석)

  • Kim, Sang-Tae;Kang, Seok-Heon;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.139-147
    • /
    • 2008
  • DVB-S2 (Digital Video Broadcasting-Satellite, Version 2) system transmits frames which adapt their structures based on the channel conditions, thus requiring simultaneous detection of the start of the Same (SoF) and the frame structure at the initial acquisition stage of the receiver. Also, a very low value of the minimum operating signal-to-noise ratio (SNR) for the acquisition necessitates a method utilizing multiple received frames to meet the required performance. In this paper, performance of joint time synchronization and frame structure detection methods using multiple DVB-S2 frames is evaluated by deriving the detection error probability. In particular, we evaluate the performance and complexity variations when the soft- and hard-decision values of the signal correlation output are used, present the synchronization parameters to optimize the performance, and verify the analysis results via computer simulations.

Numerical modeling and analysis of RC frames subjected to multiple earthquakes

  • Abdelnaby, Adel E.;Elnashai, Amr S.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.957-981
    • /
    • 2015
  • Earthquakes occur as a cluster in many regions around the world where complex fault systems exist. The repeated shaking usually induces accumulative damage to affected structures. Damage accumulation in structural systems increases their level of degradation in stiffness and also reduces their strength. Many existing analytical tools of modeling RC structures lack the salient damage features that account for stiffness and strength degradation resulting from repeated earthquake loading. Therefore, these tools are inadequate to study the response of structures in regions prone to multiple earthquakes hazard. The objective of this paper is twofold: (a) develop a tool that contains appropriate damage features for the numerical analysis of RC structures subjected to more than one earthquake; and (b) conduct a parametric study that investigates the effects of multiple earthquakes on the response of RC moment resisting frame systems. For this purpose, macroscopic constitutive models of concrete and steel materials that contain the aforementioned damage features and are capable of accurately capturing materials degrading behavior, are selected and implemented into fiber-based finite element software. Furthermore, finite element models that utilize the implemented concrete and steel stress-strain hysteresis are developed. The models are then subjected to selected sets of earthquake sequences. The results presented in this study clearly indicate that the response of degrading structural systems is appreciably influenced by strong-motion sequences in a manner that cannot be predicted from simple analysis. It also confirms that the effects of multiple earthquakes on earthquake safety can be very considerable.

Seismic behavior of frames with innovative energy dissipation systems (FUSEIS 1-1)

  • Dougka, Georgia;Dimakogianni, Danai;Vayas, Ioannis
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.561-580
    • /
    • 2014
  • After strong earthquakes conventional frames used worldwide in multi - story steel buildings (e.g. moment resisting frames) are not well positioned according to reparability. Two innovative systems for seismic resistant steel frames incorporated with dissipative fuses were developed within the European Research Program "FUSEIS" (Vayas et al. 2013). The first, FUSEIS1, resembles a vertical Vierendeel beam and is composed of two closely spaced strong columns rigidly connected to multiple beams. In the second system, FUSEIS2, a discontinuity is introduced in the composite beams of a moment resisting frame and the dissipative devices are steel plates connecting the two parts. The FUSEIS system is able to dissipate energy by means of inelastic deformations in the fuses and combines ductility and architectural transparency with stiffness. In case of strong earthquakes damage concentrates only in the fuses which behave as self-centering systems able to return the structure to its initial undeformed shape. Repair work after such an event is limited only to replacing the fuses. Experimental and numerical investigations were performed to study the response of the fuses system. Code relevant design rules for the seismic design of frames with dissipative FUSEIS and practical recommendations on the selection of the appropriate fuses as a function of the most important parameters and member verifications have been formulated and are included in a Design Guide. This article presents the design and performance of building frames with FUSEIS 1-1 based on models calibrated on the experimental results.

Forces and Displacements of Highrise Braced Frames with Facade Riggers (여러개의 파사드리거를 갖는 고층구조물의 응력과 변위)

  • Yuk, Min-Hye;Jung, Dong-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.181-190
    • /
    • 2005
  • In the conventional outrigger system, the outriggers are located in the planes of the core walls and this system has disadvantage of obstructing flexibility in the interior layout. But thc facade riggers in the structure uc located In the exterior frames in the direction of the lateral loading. The interaction between the traced frames and facade riggers is through the floor diaphragms adjacent to the chords of the riggers. This paper presents an approximate analysis technique lot preliminary analysis of multiple facade rigger stiffened braced frames in tall buildings subjected to uniformly and triangularly distributed loads as well as a lateral point load at the top of the structure. Comparisons with the results by the program MIDAS for the structural models have shown that this analysis can give reasonably accurate results for highrise braced frames with multiple facade riggers. The method allows a simple procedure for obtaining the optimum level of the facade riggers in addition to a rapid assessment of the influence of the facade riggers on the performance of the highrise structure such as the reduction in lateral deflection at the top and the overturning moment at the base of the braced frame.

Human Action Recognition Based on 3D Convolutional Neural Network from Hybrid Feature

  • Wu, Tingting;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1457-1465
    • /
    • 2019
  • 3D convolution is to stack multiple consecutive frames to form a cube, and then apply the 3D convolution kernel in the cube. In this structure, each feature map of the convolutional layer is connected to multiple adjacent sequential frames in the previous layer, thus capturing the motion information. However, due to the changes of pedestrian posture, motion and position, the convolution at the same place is inappropriate, and when the 3D convolution kernel is convoluted in the time domain, only time domain features of three consecutive frames can be extracted, which is not a good enough to get action information. This paper proposes an action recognition method based on feature fusion of 3D convolutional neural network. Based on the VGG16 network model, sending a pre-acquired optical flow image for learning, then get the time domain features, and then the feature of the time domain is extracted from the features extracted by the 3D convolutional neural network. Finally, the behavior classification is done by the SVM classifier.

Cooperative Frame Aggregation in IEEE 802.11n Wireless Networks (IEEE 802.11n 무선 네트워크에서의 협력적 프레임 집약 기법)

  • Song, Tae-Won;Pack, Sang-Heon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.485-490
    • /
    • 2010
  • IEEE 802.11n supports two frame aggregation schemes, aggregation for MAC service data unit (A-MSDU) and aggregation for MAC protocol data unit (A-MPDU), to improve throughput at the MAC layer. In this paper, we propose a cooperative frame aggregation (CoFA), which can recover erroneous frames in a cooperative manner based on A-MPDU. Specifically, CoFA receive multiple frames from direct and relay paths, and combined multiple frames jointly. Numerical results show that CoFA outperforms direct transmission and relay transmission over diverse channel conditions.

Multi-criteria performance-based optimization of friction energy dissipation devices in RC frames

  • Nabid, Neda;Hajirasouliha, Iman;Petkovski, Mihail
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.185-199
    • /
    • 2020
  • A computationally-efficient method for multi-criteria optimisation is developed for performance-based seismic design of friction energy dissipation dampers in RC structures. The proposed method is based on the concept of Uniform Distribution of Deformation (UDD), where the slip-load distribution along the height of the structure is gradually modified to satisfy multiple performance targets while minimising the additional loads imposed on existing structural elements and foundation. The efficiency of the method is demonstrated through optimisation of 3, 5, 10, 15 and 20-storey RC frames with friction wall dampers subjected to design representative earthquakes using single and multi-criteria optimisation scenarios. The optimum design solutions are obtained in only a few steps, while they are shown to be independent of the selected initial slip loads and convergence factor. Optimum frames satisfy all predefined design targets and exhibit up to 48% lower imposed loads compared to designs using a previously proposed slip-load distribution. It is also shown that dampers designed with optimum slip load patterns based on a set of spectrum-compatible synthetic earthquakes, on average, provide acceptable design solutions under multiple natural seismic excitations representing the design spectrum.

The accuracy of fragility curves of the steel moment-resisting frames and SDOF systems

  • Yaghmaei-Sabegh, Saman;Jafari, Ali;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.243-259
    • /
    • 2021
  • In the present paper, a Monte Carlo-based framework is developed to investigate the accuracy and reliability of analytical fragility curves of steel moment-resisting frames and simple SDOF systems. It is also studied how the effectiveness of incremental dynamic analysis (IDA) and multiple stripes analysis (MSA) approaches, as two common nonlinear dynamic analysis methods, are influenced by the number of records and analysis stripes in fragility curves producing. Results showed that the simple SDOF systems do not provide accurate and reliable fragility curves compared with realistic steel moment-resisting structures. It is demonstrated that, the effectiveness of nonlinear dynamic analysis approaches is dependent on the fundamental period of structures, where in short-period structures, IDA is found to be more effective approach compared with MSA. This difference between the effectiveness of two analysis approaches decreases as the fundamental period of structures become longer. Using of 2 or 3 analysis stripes in MSA approach leads to significant inaccuracy and unreliability in the estimated fragility curves. Additionally, 15 number of ground motion records is recommended as a threshold of significant unreliability in estimated fragility curves, constructed by MSA.

Fast Multiple Reference Frame Selection Method for Motion Estimation and Compensation in Video Coding (동영상 부호화의 움직임 추정 및 보상을 위한 고속 다중 참조 프레임 선택 기법)

  • Kim, Jae-Hoon;Kim, Myoung-Jin;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1066-1072
    • /
    • 2007
  • In this paper, we propose a fast multiple reference frame selection method for motion estimation and compensation in video coding. Reference frames selected as an optimal reference frame by variable block sizes motion estimation have the statistical characteristic that was based on block size. Using the statistical characteristic, reference frames for smaller block size motion estimation can be selected from reference frame which was decided as an optimal one for the upper layer block size. Simulation results show that the proposal method decreased the computations about 60%. Nevertheless, PSNR and bit rate were almost same as the performances of original H.264 multiple reference motion estimation.

Seismic performance of RC frame having low strength concrete: Experimental and numerical studies

  • Rizwan, Muhammad;Ahmad, Naveed;Khan, Akhtar Naeem
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.75-89
    • /
    • 2019
  • The paper presents experimental and numerical studies carried out on low-rise RC frames, typically found in developing countries. Shake table tests were conducted on 1:3 reduced scaled two-story RC frames that included a code conforming SMRF model and another non-compliant model. The later was similar to the code conforming model, except, it was prepared in concrete having strength 33% lower than the design specified, which is commonly found in the region. The models were tested on shake table, through multiple excitations, using acceleration time history of 1994 Northridge earthquake, which was linearly scaled for multi-levels excitations in order to study the structures' damage mechanism and measure the structural response. A representative numerical model was prepared in finite element based program SeismoStruct, simulating the observed local damage mechanisms (bar-slip and joint shear hinging), for seismic analysis of RC frames having weaker beam-column joints. A suite of spectrum compatible acceleration records was obtained from PEER for incremental dynamic analysis of considered RC frames. The seismic performance of considered RC frames was quantified in terms of seismic response parameters (seismic response modification, overstrength and displacement amplification factors), for critical comparison.