• Title/Summary/Keyword: Multiple Columns

Search Result 87, Processing Time 0.023 seconds

Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices (에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

Form Follows Function - The Composite Construction and Mixed Structures in Modern Tall Buildings

  • Peng, Liu
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • The tall building and super tall building has been a common building type in China, with multiple functions and complex geometry. Composite construction is broadly used in tall building structures and constitutes the mixed structure together with concrete and steel constructions. The mixture of the constructions is purposely designed for specific area based on the analysis results to achieve the best cost-effectiveness. New types of composite construction are conceived of by engineers for columns and walls. Material distribution is more flexible and innovative in the structural level and member level. However the reliability of computer model analysis should be verified carefully. Further researches in the design and build of composite construction are necessary to ensure the success of its application. Composite or Mixture Index is suggested to be used as a performance benchmark.

Simultaneous Analysis of Multi-residual pesticides using GC/NPD (GC/NPD를 이용한 다성분 잔류농약의 동시분석)

  • 김우성;이선화;김상엽;정동윤;김재이;이영자;이홍재;정성욱;박흥재
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1117-1120
    • /
    • 2003
  • Pesticides were extracted from samples with 70% acetone and methylene chloride in order, and then cleaned up via open-column chromatography apparatus packed with florisil, and finally analyzed simultaneously the organophosphorus pesticides using GC/NPD. Ultra-2 and Ultra-1 fused silica capillary columns were used to separate and identify the products. Recovery of most analytes from soybean sample, taken from pesticide residues well, was greater than(80%) for all except(6) analytes. This method can simultaneously determine multiple pesticides with a high degree of accuracy and precision.

Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1221-1236
    • /
    • 2016
  • Modular structures consist of standardized modules and their connections. A modular bridge pier is proposed to accelerate bridge construction. Multiple concrete-filled steel tubes (CFTs) using commercial steel tubes were chosen as the main members. Buckling restrained bracings and enhanced connection details were designed to prevent premature low-cycle fatigue failure upon cyclic loading. The pier had a height of 7.95 m, widths of 2.5 m and 2.0 m along the strong and weak axis, respectively. Cyclic tests were performed on the modular pier to investigate structural performance. Test results showed that four CFT columns reached yielding without a premature failure of the bracing connections. The ultimate capacity of the modular pier was reasonably estimated based on the plastic-hinge-analysis concept. The modular CFT pier with enhanced bracing showed improved displacement ductility without premature failure at the welding joints.

A correction method for objective seismic damage index of reinforced concrete columns

  • Kang, Jun Won;Lee, Jeeho
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.741-748
    • /
    • 2018
  • In this paper, the sensitivity of a plastic-damage-based structural damage index on mesh density is studied. Multiple finite element meshes with increasing density are used to investigate their effect on the damage index values calculated from nonlinear finite element simulations for a reinforced concrete column subjected to cyclic loading. With the simulation results, this paper suggests a correction method for the objective damage index based on nonlinear regression of volumetric tensile damage ratio data. The modified damage index values are presented in the quasi-static cyclic simulation to show the efficacy of the suggested correction method.

Surgical Treatment Strategy for Distal Humerus Intra-articular Fractures

  • Lee, Hyo-Jin
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.2
    • /
    • pp.113-117
    • /
    • 2019
  • Treating distal humerus fractures, especially those involving intra-articular lesions, is complex and often technically demanding. Although there still exist many controversial issues, the goal of treatment is to establish anatomical stable fixation by restoring the two columns and the articular surface. Universally, a posterior midline incision is applied, and the approach varies according to the further management of the triceps or olecranon. Evidence supports dual plate fixation as the optimal fixation method, and debates regarding appropriate plating configuration are still ongoing. As multiple clinical studies comparing results of parallel and perpendicular plate fixation have shown no actual difference, it is important to place the plates according to the fracture configuration.

Application of Hybrid Structural System Using Coupled Vibration Control Structure and Seismic Isolated Structure in High-Rise Building

  • Nakajima, Shunsuke
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • This building is a forty-eight story, 170 meters high multiple dwelling house with Dual Frame System (DFS), a coupled vibration system connecting two independent structures with hydraulic dampers. Generation of large deformation between two structures during earthquakes contributes to make the hydraulic dampers effective. To improve the aseismic performance more, this building adopts DFS hybrid system that consists of DFS and base isolation system. About typical floors, columns and beams are constructed with LRV precast concrete method that shorten the construction period greatly by integrating column-beam joints in column members.

The Structural Engineering Design and Construction of the Highest Occupiable Skybridge in the World: The Address Jumeirah Resort, Dubai, UAE

  • Hadow, Zaher;Dannan, Yamen
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2022
  • The Address Jumeirah Resort is a mixed-use 77-story tower reaching a height of 301 meters with a slenderness ratio of 13.5:1. The development is situated in the Jumeirah Beach District and accommodates 217 key five-star hotel suites, 478 residential apartments, 444 serviced-branded apartments, retail shops, ballrooms and entertainment facilities around the premises. The building has over 242,000 m2 of usable area. The project is an award-winning development that broke multiple Guinness records. The focus of the paper is to present the challenges faced in the structural design and construction of the super tall tower and the highest occupiable skybridge in the world.

Seismic Responses of Highway Multiple Span Steel Bridges Retrofitted by Protective Devices (저감장치에 의해 개선된 고속도로 다경간 강교량의 지진응답)

  • Choi, Eun-Soo;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.49-59
    • /
    • 2004
  • A previous study evaluated the seismic response of typical multi-span simply supported (MSSS) and multi-span continuous (MSC) steel-girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multi-span simply supported and multi-span continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that iead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel-girder bridge. Restrainer cables, which are becoming a common retrofit measure, are only moderately effective in reducing the seismic vulnerability of MSSS and MSC steel girder bridges.

  • PDF

Collapse resistance of steel frames in two-side-column-removal scenario: Analytical method and design approach

  • Zhang, JingZhou;Yam, Michael C.H.;Soltanieh, Ghazaleh;Feng, Ran
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.485-496
    • /
    • 2021
  • So far analytical methods on collapse assessment of three-dimensional (3-D) steel frames have mainly focused on a single-column-removal scenario. However, the collapse of the Federal Building in the US due to car bomb explosion indicated that the loss of multiple columns may occur in the real structures, wherein the structures are more vulnerable to collapse. Meanwhile, the General Services Administration (GSA) in the US suggested that the removal of side columns of the structure has a great possibility to cause collapse. Therefore, this paper analytically deals with the robustness of 3-D steel frames in a two-side-column-removal (TSCR) scenario. Analytical method is first proposed to determine the collapse resistance of the frame during this column-removal procedure. The reliability of the analytical method is verified by the finite element results. Moreover, a design-based methodology is proposed to quickly assess the robustness of the frame due to a TSCR scenario. It is found the analytical method can reasonably predict the resistance-displacement relationship of the frame in the TSCR scenario, with an error generally less than 10%. The parametric numerical analyses suggest that the slab thickness mainly affects the plastic bearing capacity of the frame. The rebar diameter mainly affects the capacity of the frame at large displacement. However, the steel beam section height affects both the plastic and ultimate bearing capacity of the frame. A case study on a six-storey steel frame shows that the design-based methodology provides a conservative prediction on the robustness of the frame.