• 제목/요약/키워드: Multiple 2D Images

검색결과 160건 처리시간 0.029초

3D Integral Imaging Display using Axially Recorded Multiple Images

  • Cho, Myungjin;Shin, Donghak
    • Journal of the Optical Society of Korea
    • /
    • 제17권5호
    • /
    • pp.410-414
    • /
    • 2013
  • In this paper, we propose a 3D display method combining a pickup process using axially recorded multiple images and an integral imaging display process. First, we extract the color and depth information of 3D objects for displaying 3D images from axially recorded multiple 2D images. Next, using the extracted depth map and color images, elemental images are computationally synthesized based on a ray mapping model between 3D space and an elemental image plane. Finally, we display 3D images optically by an integral imaging system with a lenslet array. To show the usefulness of the proposed system, we carry out optical experiments for 3D objects and present the experimental results.

Clustering of 2D-Gel Images

  • Hur, Won
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.746-749
    • /
    • 2003
  • Alignment of 2D-gel images of biological samples can visualize the difference of expression profiles and also inform us candidates of protein spots to be further analyzed. However, comparison of two proteome images between case and control does not always successfully identify differentially expressed proteins due to sample-to-sample variation. Because of poor reproducibility of 2D-gel electrophoresis, sample-by-sample variations and inconsistent electrophoresis conditions, multiple number of 2D-gel image must be processed to align each other to visualize the difference of expression profiles and to deduce the protein spots differentially expressed with reliability. Alignment of multiple 2D-Gel images and their clustering were carried out by applying various algorithms and statistical methods. In order to align multiple images, multiresolution-multilevel algorithm was found out to be suitable for fast alignment and for distorted images. Clustering of 12 different images implementing a k-means algorithm gives a phylogenetic tree of distance map of the proteomes. Microsoft Visual C++ was used to implement the algorithms in this work.

  • PDF

다시점 및 다중클러스터 환경에서 네트워크를 이용한 효율적인 실시간 영상 합성 기법 (An Efficient Real-Time Image Reconstruction Scheme using Network m Multiple View and Multiple Cluster Environments)

  • 유강수;임은천;심춘보
    • 한국정보통신학회논문지
    • /
    • 제13권11호
    • /
    • pp.2251-2259
    • /
    • 2009
  • 네트워크를 기반으로 하나의 클러스터가 4개의 카메라로 구성된 4개의 다중 클러스터로부터 2D 영상을 조합하여 3D 입체 영상을 생성하는 알고리즘 및 시스템을 제안한다. 제안하는 기법은 다중 클러스터 환경에서 동작하고 실시간 대용량의 데이터 처리로 인한 시스템의 부하를 분산시키기 위해 네트워크를 이용한 서버-클라이언트 구조를 가진다. 아울러 성능 향상을 고려해 JPEG 압축과 램 디스크 방식을 적용한다. 4채널 16개의 카메라로부터 입력되는 입력 영상에 대해서 이진화 영상을 구하고, Sobel 및 Prewitt 등의 에지 검출 알고리즘을 적용시킨 후 영상들 간의 시차를 구한 후에 3D 입체 영상을 생성한다. 성능 분석 결과, 클라이언트에서 서버로 전송하는 전송시간은 약 0.05초가 소요되며, 4채널 16개의 카메라로부터 2D 영상을 조합하여 3D 입체 영상을 생성하는 알고리즘에 소요되는 시간은 약 0.84초가 소요된다. 이를 통해 실시간으로 다시점 및 다중 클러스터 환경에서 3D 입체 영상을 생성하는 효율적인 시스템임을 확인할 수 있었다.

다중 2D 영상을 이용한 3D 인체 계측 시스템 (A System for Measuring 3D Human Bodies Using the Multiple 2D Images)

  • 김창우;최창석;김효숙;강인애;전준현
    • 복식
    • /
    • 제53권5호
    • /
    • pp.1-12
    • /
    • 2003
  • This paper proposes a system for measuring the 3D human bodies using the multiple 2D images. The system establishes the multiple image input circumstance from the digital camera for image measurement. The algorithm considering perspective projection leads us to estimate the 3D human bodies from the multiple 2D images such as frontal. side and rear views. The results of the image measurement is compared those of the direct measurement and the 3D scanner for the total 40 items (12 heights, 15 widths and 13 depths). Three persons measure the 40 items using the three measurement methods. In comparison of the results obtained among the measurement methods and the persons, the results between the image measurement and the 3D scanner are very similar. However, the errors for the direct measurement are relatively larger than those between the image measurement and the 3D scanner. For example, the maximum errors between the image measurement and the 3D scanner are 0.41cm in height, 0.39cm in width and 0.95cm in depth. The errors are acceptable in body measurement. Performance of the image measurement is superior to the direct. because the algorithm estimates the 3D positions using the perspective projection. In above comparison, the image measurement is expected as a new method for measuring the 3D body, since it has the various advantages of the direct measurement and 3D scanner in performance for measurement as well as in the devices, cost, Portability and man power.

Effectual Method FOR 3D Rebuilding From Diverse Images

  • Leung, Carlos Wai Yin;Hons, B.E.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 한국정보컨버전스학회 2008년도 International conference on information convergence
    • /
    • pp.145-150
    • /
    • 2008
  • This thesis explores the problem of reconstructing a three-dimensional(3D) scene given a set of images or image sequences of the scene. It describes efficient methods for the 3D reconstruction of static and dynamic scenes from stereo images, stereo image sequences, and images captured from multiple viewpoints. Novel methods for image-based and volumetric modelling approaches to 3D reconstruction are presented, with an emphasis on the development of efficient algorithm which produce high quality and accurate reconstructions. For image-based 3D reconstruction a novel energy minimisation scheme, Iterated Dynamic Programming, is presented for the efficient computation of strong local minima of discontinuity preserving energyy functions. Coupled with a novel morphological decomposition method and subregioning schemes for the efficient computation of a narrowband matching cost volume. the minimisation framework is applied to solve problems in stereo matching, stereo-temporal reconstruction, motion estimation, 2D image registration and 3D image registration. This thesis establishes Iterated Dynamic Programming as an efficient and effective energy minimisation scheme suitable for computer vision problems which involve finding correspondences across images. For 3D reconstruction from multiple view images with arbitrary camera placement, a novel volumetric modelling technique, Embedded Voxel Colouring, is presented that efficiently embeds all reconstructions of a 3D scene into a single output in a single scan of the volumetric space under exact visibility. An adaptive thresholding framework is also introduced for the computation of the optimal set of thresholds to obtain high quality 3D reconstructions. This thesis establishes the Embedded Voxel Colouring framework as a fast, efficient and effective method for 3D reconstruction from multiple view images.

  • PDF

Evaluation of Morphological Changes in Degenerative Cartilage Using 3-D Optical Coherence Tomography

  • Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • 제12권2호
    • /
    • pp.98-102
    • /
    • 2008
  • Optical Coherence Tomography (OCT) is an important noninvasive medical imaging technique that can reveal subsurface structures of biological tissue. OCT has demonstrated a good correlation with histology in sufficient resolution to identify morphological changes in articular cartilage to differentiate normal through progressive stages of degenerative joint disease. Current OCT systems provide individual cross-sectional images that are representative of the tissue directly under the scanning beam, but they may not fully demonstrate the degree of degeneration occurring within a region of a joint surface. For a full understanding of the nature and degree of cartilage degeneration within a joint, multiple OCT images must be obtained and an overall assessment of the joint surmised from multiple individual images. This study presents frequency domain three-dimensional (3-D) OCT imaging of degenerative joint cartilage extracted from bovine knees. The 3-D OCT imaging of articular cartilage enables the assembly of 126 individual, adjacent, rapid scanned OCT images into a full 3-D image representation of the tissue scanned, or these may be viewed in a progression of successive individual two-dimensional (2-D) OCT images arranged in 3-D orientation. A fiber-based frequency domain OCT system that provides cross-sectional images was used to acquire 126 successive adjacent images for a sample volume of $6{\times}3.2{\times}2.5\;mm^3$. The axial resolution was $8\;{\mu}m$ in air. The 3-D OCT was able to demonstrate surface topography and subsurface disruption of articular cartilage consistent with the gross image as well as with histological cross-sections of the specimen. The 3-D OCT volumetric imaging of articular cartilage provides an enhanced appreciation and better understanding of regional degenerative joint disease than may be realized by individual 2-D OCT sectional images.

물체 주위를 돌아가며 3차원 스캐너로 획득된 다면 이미지의 자동접합에 관한 연구 (A Study on the Automatic Registration of Multiple Range Images Obtained by the 3D Scanner around the Object)

  • 홍훈기;조경호
    • 한국CDE학회논문집
    • /
    • 제5권3호
    • /
    • pp.285-292
    • /
    • 2000
  • A new method for the 3D automatic registration of the multiple range images has been developed for the 3D scanners(non-contact coordinates measurement systems). In the existing methods, the user usually has to input more than 3 pairs of corresponding points for the iterative registration process. The major difficulty of the existing systems lies in that the input corresponding points must be selected very carefully because the optimal searching process and the registration results mostly depend upon the accuracy of the selected points. In the proposed method, this kind of difficulty is greatly mitigated even though it needs only 2 pairs of the corresponding input points. Several registration examples on the 3D measured data have been presented and discussed with the introduction to the proposed algorithm.

  • PDF

2H-Gel 이미지의 정렬 및 클러스터링 (Clustering of 2D-Gel images)

  • 허원
    • KSBB Journal
    • /
    • 제20권2호
    • /
    • pp.71-75
    • /
    • 2005
  • 2D-Gel 이미지간의 유사성을 기준으로 생물학적인 시료가 프로테옴 수준에서 유사성의 정도와 서로 다른 단백질 스팟을 파악해 낼 수 있다. 그러나 생물학적인 시료는 개체간 변화가 크고 2차원 전기영동장치의 재현성의 한계로 인하여 비교가 어려운 경우가 많고 의미 없는 차이점만 발견되는 경우 또한 비일비재하다. 이를 극복하기 위해서는 프로테옴 이미지간의 정렬을 통하여 정확한 비교가 가능하게 하여야한다. 본 연구에서는 이미지상의 단백질 스팟을 일일이 찾지 않고 여러 개의 원시 이미지를 동시에 정렬시키는 multiresolution-multilevel algorithm을 활용하여 소프트웨어를 개발하였다. 또 이렇게 정렬된 이미지들이 서로 얼마나 유사한지 보여주는 Phylogenetic tree를 자동으로 생성시키는 소프트웨어를 개발하였다. 이 방법을 이용하여 Fetal Alcohol Syndrome의 case와 control의 10개의 프로테옴 이미지에 대하여 클러스터링을 시도하였다. 이와 같이 2D-Gel 프로테옴 전체의 이미지를 비교하여 유사한 정도에 따라 모으는 클러스터링은 FAS 시료의 경우 case와 control 보다는 시료원의 외연적인 특징인 나이 혹은 성별에 더 의하여 의존하는 것으로 나타났다.

3차원 다중 치과 CT 영상의 고화질 스티칭 기법 (High-quality Stitching Method of 3D Multiple Dental CT Images)

  • 박세윤;박성진;이정진;신준석;신영길
    • 한국멀티미디어학회논문지
    • /
    • 제17권10호
    • /
    • pp.1205-1212
    • /
    • 2014
  • In this paper, we propose a high-quality stitching method of 3D multiple dental CT images. First, a weighted function is generated using the difference of two distance functions that calculate a distance from the nearest edge of an overlapped region to each position. And a blending ratio propagation function for two gradient vectors is parameterized by the difference and magnitude of gradient vectors that is also applied by the weighted function. When the blending ratio is propagated, an improved region growing scheme is proposed to decide the next position and calculate the blending intensity. The proposed method produces a high-quality stitching image. Our method removes the seam artifact caused by the mean intensity difference between images and vignetting effect. And it removes double edges caused by local misalignment. Experimental results showed that the proposed method produced high-quality stitching images for ten patients. Our stitching method could be usefully applied into the stitching of 3D or 2D multiple images.

3D Building Reconstructions for Urban Modeling using Line Junction Features

  • Lee, Kyu-Won
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.78-82
    • /
    • 2007
  • This paper propose a building reconstruction method of urban area for a 3D GIS with stereo images. The 3D reconstruction is performed by the grouping 3D line segments extracted from the stereo matching of salient edges which are derived from multiple images. The grouping is achieved by conditions of degrees and distances between lines. Building objects are determined by the junction combinations of the grouped line segments. The proposed algorithm demonstrates effective results of 3D reconstruction of buildings with 2D aerial images.