• Title/Summary/Keyword: Multiphase analysis

Search Result 159, Processing Time 0.024 seconds

Design of Helical Ribbon Type Impeller for Agitation Using CFD Analysis (전산유동해석을 활용한 헬리컬 리본형 교반기 임펠러 설계)

  • Yun, Jeong-Eui
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • The agitator is an important industrial instrument widely used for mixing various solutions in the industrial field. In this study, the optimized design of the helical ribbon type impeller, which is mainly used for the stirring of the high viscosity solution, is carried out by CFD analysis. For this purpose, an index for evaluating the agitation performance is newly defined and an optimization design process is performed through a multiphase computational fluid dynamic analysis. From these results, it is understood that the stirring performance is maximized in the case of the helical ribbon impeller under given operating conditions when the width is 7.5 mm, the height is 160 mm and the turn is 1.

Modeling of coupled liquid-gas-solid three-phase processes due to fluid injection

  • Zang, Yong-Ge;Sun, Dong-Mei;Feng, Ping;Stephan, Semprich
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-23
    • /
    • 2017
  • A coupled liquid-gas-solid three-phase model, linking two numerical codes (TOUGH2/EOS3 and $FLAC^{3D}$), was firstly established and validated by simulating an in-situ air flow test in Essen. Then the coupled model was employed to investigate responses of multiphase flow and soil skeleton deformation to compressed air or freshwater injection using the same simulation conditions in an aquifer of Tianjin, China. The simulation results show that with injecting pressurized fluids, the vertical effective stress in some area decreases owing to the pore pressure increasing, an expansion of soil skeleton appears, and land uplift occurs due to support actions from lower deformed soils. After fluids injection stops, soil deformation decreases overall due to injecting fluids dissipating. With the same applied pressure, changes in multiphase flow and geo-mechanical deformation caused by compressed air injection are relatively greater than those by freshwater injection. Furthermore, the expansion of soil skeleton induced by compressed air injection transfers upward and laterally continuously with time, while during and after freshwater injection, this expansion reaches rapidly a quasi-steady state. These differences induced by two fluids injection are mainly because air could spread upward and laterally easily for its lower density and phase state transition appears for compressed air injection.

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.

Study on the Effect of Design Parameters of the Vane Type Inertial Separator Using Commercial CFD Code (상용 CFD 프로그램을 사용한 베인형 관성분리기의 설계인자 영향 검토)

  • Lee, Dap-Yeon;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.470-475
    • /
    • 2017
  • Since the intake air of gas turbine engine of marine purpose contains water particles, inertial separator for separating the air and water particles are provided. Saw type and wave type separator are now used to separate inflow water particle from the gas. In this paper, the design parameters of saw type separator are studied by numerical simulations. Using the commercial CFD program, Star-CCM+, Lagrangian-Eulerian method was used to perform the analysis of two phase flow of the mist in the air. This method solves Reynolds-Averaged Navier-Stokes equations in Eulerian framework for the continuous phase, while solves equation of motion for individual particles in Lagrangian framework. Lagrangian multiphase method was applied to monitor the particles of different sizes and shapes and to verify collision between particles by chasing particles. Water particles were injected through injectors located at the inlet of the separator and escape mode was used which assumes that the particles attached on the surface of inertial separator were removed from the simulation, effectively escaping the solution domain. Through the numerical computations with the inlet condition of constant water particle size in the wetness fraction of 85%, efficiency of eliminating the water particle and the pressure drop between the inlet and outlet were examined.

An Analysis of Stochastic Network${\cdot}$Using Q-GERT (Q-GERT를 이용한 확률적 네트워크의 분석)

  • Kang, Suk-Ho;Kim, Won-Kyung
    • Journal of the military operations research society of Korea
    • /
    • v.5 no.1
    • /
    • pp.155-162
    • /
    • 1979
  • GERT modeling is in a dynamic stage of development. One of the most exciting and useful new developments in GERT modeling and Simulation is the modeling technology and computer package called Q-GERT. As the name implies, this provides the capability to analyze complex networks of queueing systems. The modeling approach is quite similar to GERT, but includes queue nodes called 'Select' nodes, which allow a considerable amount of logic to be included in the analysis of complex networks of multichannel, multiphase queueing systems should find the Q-OERT package of considerable interest.

  • PDF

TEMPERATURE-EXPLICIT FORMULATION OF ENERGY EQUATION FOR A HEAT TRANSFER ANALYSIS (열유동 해석을 위한 에너지 방정식의 온도에 현시적인 이산화 기법)

  • Kim, Jong-Tae;Kim, Sang-Baik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.277-282
    • /
    • 2009
  • A temperature equation which is derived from an enthalpy transport equation by using an assumption of a constant specific heat is very attractive for analyses of heat and fluid flows. It can be used for an analysis of a solid-fluid conjugate heat transfer, and it does not need a numerical method to find temperature from a temperature-enthalpy relation. But its application is limited because of the assumption. A new method is derived in this study, which is a temperature-explicit formulation of the energy equation. The enthalpy form of the energy equation is used in the method. But the final discrete form of the equation is expressed with temperature. It can be used for a solid-fluid conjugate heat transfer and multiphase flows. It is found by numerical tests that it is very efficient and as accurate as the standard enthalpy formulation.

  • PDF

The Numerical multi-phase analysis of ventilating flow around vehicle (환기 공동을 이용한 수중운동체 주위의 초월 공동 다상유동장 해석)

  • Park, Wam-Gyu;Kim, Dong-Hyun;Jung, Chul-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.252-255
    • /
    • 2011
  • Supercavitating torpedo uses the supercavitation technology that can reduce dramatically the skin friction drag. The present work focuses on the numerical analysis of the non-condensable cavitating flow around the supercavitating torpedo. The governing equations are the Navier-Stokes equations based on the homogeneous mixture model. The cavitation model uses a new cavitation model which was developed by Merkle(2006). The multiphase flow solver uses an implicit preconditioning scheme in curvilinear coordinates. The ventilated cavitation is implemented by non-condensable gas injection on backward of cavitator cone and the base of the torpedo. The comparison between the without and with ventilated cavitation numerical results, with ventilated cavitation using non-condensable gas injection is more efficient method.

  • PDF

AN INVESTIGATION OF SURFACE VORTICES BEHAVIOR IN PUMP SUMP

  • Kang, Won-Tae;Shin, Byeong-Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.592-595
    • /
    • 2011
  • A numerical investigation on a suction vortices, free vortices and subsurface vortices behavior in the model sump system with multi-intakes is performed A test model sump and piping system were designed based on Froude similitude for the prototype of the recommended structure layout by HI-9.B Standard for Pump Intake Design of the Hydraulic Institute. A numerical analysis of three dimensional multiphase flows through the model sump is performed by using the finite volume method of the CFX code with multi-block structured grid systems. A ${\kappa}-{\omega]$ ShearStressTransportturbulencemodelandthe Rayleigh-Plesset cavitation model are used for solving turbulence cavitating flow. From the numerical analysis, several types of vortices are reproduced and their formation, growing shedding and detailed vortex structures are investigated. To reduce abnormal vortices, an anti-vortex device is considered and its effect is investigated and discussed.

  • PDF

Design and Drive Performance of Single-phase Hybrid SRM with Commercial Ferrite Permanent Magnets (상용자석을 사용한 단상 하이브리드 SRM의 설계 및 구동 특성)

  • Ahn, Jin-Woo;Heo, Jae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • Compared to a multiphase SRM, a single-phase SRM has some advantages, such as lower number of switches and power converter size, which leads to gradually increasing in the household appliances and industrial applications. But the torque dead zone is existed in the single-phase SRM which decreases the starting capability of the motor and increases the torque ripple. In order to solve the aforementioned problems, a single-phase hybrid SRM with commercial ferrite permanent magnet is proposed in this paper. Basic design principle for the proposed structure is described. To verify the proposed structure, FEM is employed to get the characteristics of the proposed structure. Based on the analysis, a prototype is designed and manufactured. And, the experimental system is also constructed. The validity of the proposed structure is verified by the experimental results.

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브 내부 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.