• Title/Summary/Keyword: Multiphase CFD

Search Result 78, Processing Time 0.024 seconds

Multiphase CFD Analysis of Microbubble Generator using Swirl Flow (선회유동을 이용한 마이크로버블 발생기의 다상유동 전산유체역학 해석)

  • Yun, S.I.;Kim, H.S.;Kim, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Microbubble technology has been widely applied in various industrial fields. Recently, research on many types of microbubble application technology has been conducted experimentally, but there is a limit in deriving the optimal design and operating conditions. Therefore, if the computational fluid dynamics (CFD) analysis of multiphase flow is used to supplement these experimental studies, it is expected that the time and cost required for prototype production and evaluation tests will be minimized and optimal results will be derived. However, few studies have been conducted on multiphase flow CFD analysis to interpret fluid flow in microbubble generators using swirl flow. In this study, CFD simulation of multiphase flow was performed to analyze the air-water mixing process and fluid flow characteristics in a microbubble generator with a dual-chamber structure. Based on the simulation results, it was confirmed that a negative pressure was formed on the central axis of rotation due to the strong swirling flow. And it could be seen that the air inside the suction tube was introduced into the inner chamber of the microbubble generator. In addition, as the high-speed mixed fluid collided with external water sucked by the negative pressure near the outlet, a large amount of microbubbles was ejected due to the shear force between the two flows flowing in opposite directions.

Thermal-hydraulic research on rod bundle in the LBE fast reactor with grid spacer

  • Liu, Jie;Song, Ping;Zhang, Dalin;Wang, Shibao;Lin, Chao;Liu, Yapeng;Zhou, Lei;Wang, Chenglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2728-2735
    • /
    • 2022
  • The research on the flow and heat transfer characteristics of lead bismuth(LBE) is significant for the thermal-hydraulic calculation, safety analysis and practical application of lead-based fast reactors(LFR). In this paper, a new CFD model is proposed to solve the thermal-hydraulic analysis of LBE. The model includes two parts: turbulent model and turbulent Prandtl, which are the important factors for LBE. In order to find the best model, the experiment data and design of 19-pin hexagonal rod bundle with spacer grid, undertaken at the Karlsruhe Liquid Metal Laboratory (KALLA) are used for CFD calculation. Furthermore, the turbulent model includes SST k - 𝜔 and k - 𝜀; the turbulent Prandtl includes Cheng-Tak and constant (Prt =1.5,2.0,2.5,3.0). Among them, the combination between SST k - 𝜔 and Cheng-Tak is more suitable for the experiment. But in the low Pe region, the deviation between the experiment data and CFD result is too much. The reason may be the inlet-effect and when Pe is in a low level, the number of molecular thermal diffusion occupies an absolute advantage, and the buoyancy will enhance. In order to test and verify versatility of the model, the NCCL performed by the Nuclear Thermal-hydraulic Laboratory (Nuthel) of Xi'an Jiao tong University is used for CFD to calculate. This paper provides two verification examples for the new universal model.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

NEAL-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW (과냉 비등유동에 대한 CFD 모의 계산에서의 벽 인접격자 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.320-325
    • /
    • 2010
  • A multiphase CFD analysis is performed to investigate the effect of near-wall grid for simulating a subcooled boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and vapor(steam) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit ($y_{w}^{+}$) was examined from 64 to 172 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y_{w}^{+}$ > 100.

  • PDF

CFD simulation of flow and heat transfer characteristics in a 5×5 fuel rod bundles with spacer grids of advanced PWR

  • Wang, Yingjie;Wang, Mingjun;Ju, Haoran;Zhao, Minfu;Zhang, Dalin;Tian, Wenxi;Liu, Tiancai;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1386-1395
    • /
    • 2020
  • High fidelity nuclear reactor fuel assembly simulation using CFD method is an effective way for the structure design and optimization. The validated models and user practice guidelines play critical roles in achieving reliable results in CFD simulations. In this paper, the international benchmark MATiS-H is studied carefully and the best user practice guideline is achieved for the rod bundles simulation. Then a 5 × 5 rod bundles model in the advanced pressurized water reactor (PWR) is established and the detailed three-dimensional thermal-hydraulic characteristics are investigated. The influence of spacer grids and mixing vanes on the flow and hear transfer in rod bundles is revealed. As the coolant flows through the spacer grids and mixing vanes in the rod bundles, the drastic lateral flow would be induced and the pressure drop increases significantly. In addition, the heat transfer is enhanced remarkably due to the strong mixing effects. The calculation results could provide meaningful guidelines for the design of advanced PWR fuel assembly.

Parametric Study on the Characteristics of Multiphase Laminar Flow with Density Difference in Various Microchannels (다양한 형상의 마이크로 채널 내 밀도 차를 가진 다상 층류 유동의 특성에 대한 매개변수 연구)

  • Paek, Seung-Ho;Kim, Dong-Sung;Choi, Young-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.783-788
    • /
    • 2009
  • In this paper, we have performed a parametric study on the characteristics of multiphase laminar flow with density difference in various microchannels. The interface between multiphase fluids is rotated by the gravitational forces induced by density difference. The numerical simulations were carried out via commercial CFD package to study the characteristics of multiphase laminar flow. The results of the numerical simulations in this study were verified by comparing with the previously reported experimental results in the literature. We have also proposed a new dimensionless relationship between dimensionless rotation angle of interface and dimensionless parameters are proposed for square microchannels with various aspect ratios. The dimensionless relationship could be widely applied to the reliable design of various microfluidic devices dealing with multiphase laminar flow.

CFD/RELAP5 coupling analysis of the ISP No. 43 boron dilution experiment

  • Ye, Linrong;Yu, Hao;Wang, Mingjun;Wang, Qianglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • Multi-dimensional coupling analysis is a research hot spot in nuclear reactor thermal hydraulic study and both the full-scale system transient response and local key three-dimensional thermal hydraulic phenomenon could be obtained simultaneously, which can achieve the balance between efficiency and accuracy in the numerical simulation of nuclear reactor. A one-dimensional to three-dimensional (1D-3D) coupling platform for the nuclear reactor multi-dimensional analysis is developed by XJTU-NuTheL (Nuclear Thermal-hydraulic Laboratory at Xi'an Jiaotong University) based on the CFD code Fluent and system code RELAP5 through the Dynamic Link Library (DLL) technology and Fluent user-defined functions (UDF). In this paper, the International Standard Problem (ISP) No. 43 is selected as the benchmark and the rapid boron dilution transient in the nuclear reactor is studied with the coupling code. The code validation is conducted first and the numerical simulation results show good agreement with the experimental data. The three-dimensional flow and temperature fields in the downcomer are analyzed in detail during the transient scenarios. The strong reverse flow is observed beneath the inlet cold leg, causing the de-borated water slug to mainly diffuse in the circumferential direction. The deviations between the experimental data and the transients predicted by the coupling code are also discussed.

Numerical simulation of air discharged in subcooled water pool

  • Y. Cordova ;D. Blanco ;Y. Rivera;C. Berna ;J.L. Munoz-Cobo ;A. Escriva
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3754-3767
    • /
    • 2023
  • Turbulent jet discharges in subcooled water pools are essential for safety systems in nuclear power plants, specifically in the pressure suppression pool of boiling water reactors and In-containment Refueling Water Storage Tank of advanced pressurized water reactors. The gas and liquid flow in these systems is investigated using multiphase flow analysis. This field has been extensively examined using a combination of experiments, theoretical models, and Computational Fluid Dynamics (CFD) simulations. ANSYS CFX offers two approaches to model multiphase flow behavior. The non-homogeneous Eulerian-Eulerian Model has been used in this work; it computes global information and is more convenient to study interpenetrated fluids. This study utilized the Large Eddy Simulation Model as the turbulence model, as it is better suited for non-stationary and buoyant flows. The CFD results of this study were validated with experimental data and theoretical results previously obtained. The figures of merit dimensionless penetration length and the dimensionless buoyancy length show good agreement with the experimental measurements. Correlations for these variables were obtained as a function of dimensionless numbers to give generality using only initial boundary conditions. CFD numerical model developed in this research has the capability to simulate the behavior of non-condensable gases discharged in water.

VOLUME CAPTURING METHOD USING UNSTRUCTURED GRID SYSTEM FOR NUMERICAL ANALYSIS OF MULTIPHASE FLOWS (다상유동 해석을 위한 비정렬격자계를 사용한 체적포착법)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.201-210
    • /
    • 2009
  • A volume capturing method using unstructured grid system for numerical analysis of multiphase flows is introduced in the present paper. This method uses an interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The novelty of CICSAM lies in the adaptive combination of high resolution discretization scheme which ensures the preservation of the sharpness and shape of the interface while retaining boundedness of the field, and no explicit interface reconstruction which is perceived to be difficult to implement on unstructured grid system. Several typical test cases for multiphase flows are presented, which are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with CICSAM. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows.

  • PDF

Simulation of industrial multiphase flows (공학적 관점에서의 다상유동 문제의 수치해석)

  • Han aehoon;Alajbegovic Ales;Seo Hyeoncheol;Blahowsky Peter
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.389-392
    • /
    • 2002
  • In many industrial applications, multiphase flow analysis is the norm rather than an exception as compared to more-conventional single-phase investigation. This paper describes the implementation of the multiphase flow simulation capability in the general purpose CFD software AVL FIRE/SWIFT. The governing equations are discretized based on a finite volume method (FVM) suitable fur very complex geometry, The pressure field is obtained using the SIMPLE algorithm. Depending on the characteristics of the multiphase flow to be examined, the user can choose either the two-fluid model or an explicit interface-tracking model based on the Volume-of-Fluid approach. For truly 'multi'-phase flow problems, it is also possible to apply a hybrid model where certain phases are explicitly tracked while the other phases are handled by the two fluid model. In order to demonstrate the capability of the method, applications to the Taylor bubble flow simulations are presented.

  • PDF