• 제목/요약/키워드: Multiphase

검색결과 431건 처리시간 0.024초

수력학적 공동현상을 이용한 온수 발생 장치에서의 회전체 형상에 대한 수치해석적 연구 (A Numerical Simulation Study on the Shape of the Rotor in Hydraulic Cavitation Heat Generator)

  • 손손;신명섭;이웅엽;엄애선;윤준용
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.75-81
    • /
    • 2017
  • This paper presents a numerical investigation on the local hydraulic cavitation phenomena of water resulting from the rotor with high rotational speed in the hydraulic cavitation heat generator. The numerical simulation utilizes the standard k-epsilon turbulence model, the mixture multiphase model and the Schnerr-Sauer cavitation model to simulate the complex cavitation phenomena in the generator. For exploring the efficient shape of the dimples on the rotor to causing cavitation phenomena artificially, the pressure distributions and the volume fractions of the vapor on the rotor are investigated respectively about different shapes of the rotor in the generator. The optimum shape of the dimple to causing cavitation phenomena in the selected shapes is obtained by the means of the numerical simulation.

Drag reduction of a rapid vehicle in supercavitating flow

  • Yang, D.;Xiong, Y.L.;Guo, X.F.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.35-44
    • /
    • 2017
  • Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV) is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE) turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.

FPGA Based Robust Open Transistor Fault Diagnosis and Fault Tolerant Sliding Mode Control of Five-Phase PM Motor Drives

  • Salehifar, Mehdi;Arashloo, Ramin Salehi;Eguilaz, Manuel Moreno;Sala, Vicent
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.131-145
    • /
    • 2015
  • The voltage-source inverters (VSI) supplying a motor drive are prone to open transistor faults. To address this issue in fault-tolerant drives applicable to electric vehicles, a new open transistor fault diagnosis (FD) method is presented in this paper. According to the proposed method, in order to define the FD index, the phase angle of the converter output current is estimated by a simple trigonometric function. The proposed FD method is adaptable, simple, capable of detecting multiple open switch faults and robust to load operational variations. Keeping the FD in mind as a mandatory part of the fault tolerant control algorithm, the FD block is applied to a five-phase converter supplying a multiphase fault-tolerant PM motor drive with non-sinusoidal unbalanced current waveforms. To investigate the performance of the FD technique, the fault-tolerant sliding mode control (SMC) of a five-phase brushless direct current (BLDC) motor is developed in this paper with the embedded FD block. Once the theory is explained, experimental waveforms are obtained from a five-phase BLDC motor to show the effectiveness of the proposed FD method. The FD algorithm is implemented on a field programmable gate array (FPGA).

Analysis and Design of Coupled Inductors for Two-Phase Interleaved DC-DC Converters

  • Lee, Jong-Pil;Cha, Honnyong;Shin, Dongsul;Lee, Kyoung-Jun;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.339-348
    • /
    • 2013
  • Multiphase dc-dc converters are widely used in modern power electronics applications due to their advantages over single-phase converters. Such advantages include reduced current stress in both the switching devices and passive elements, reduced output current ripple, and so on. Although the output current ripple of a converter can be significantly reduced by virtue of the interleaving effect, the inductor current ripple cannot be reduced even with the interleaving PWM method. One way to solve this problem is to use a coupled inductor. However, care must be taken in designing the coupled inductor to maximize its performances. In this paper, a detailed analysis of a coupled inductor is conducted and the effect of a coupled inductor on current ripple reduction is investigated extensively. From this analysis, a UU core based coupled inductor structure is proposed to maximize the performance of the coupled inductor.

Thermal Performance of a Spirally Coiled Finned Tube Heat Exchanger Under Wet-Surface Conditions

  • Wongwises Somchai;Naphon Paisarn
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.212-226
    • /
    • 2006
  • This paper is a continuation of the authors' previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.

Analysis, Design and Implementation of Flexible Interlaced Converter for Lithium Battery Active Balancing in Electric Vehicles

  • Dai, Shuailong;Wang, Jiayu;Li, Teng;Shan, Zhifei;Wei, Yewen
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.858-868
    • /
    • 2019
  • With the widespread use of modern clean energy, lithium-ion batteries have become essential as a more reliable energy storage component in the energy Internet. However, due to the difference in monomers, some of the battery over-charge or over-discharge in battery packs restrict their use. Therefore, a novel multiphase interleaved converter for reducing the inconsistencies of the individual cells in a battery pack is proposed in this paper. Based on the multiphase converter branches connected to each lithium battery, this circuit realizes energy transferred from any cell(s) to any other cell(s) complementarily. This flexible interlaced converter is composed of an improved bi-directional Buck-Boost circuit that is presented with its own available control method. A simulation model based on the PNGV model of fundamental equalization is built with four cells in PSIM. Simulation and experimental results demonstrate that converter and its control achieve simple and fast equalization. Furthermore, a comparison of traditional methods and the HNFABC equalization is provided to show the performance of the converter and the control of lithium-based battery stacks.

Computational analysis of compressibility effects on cavity dynamics in high-speed water-entry

  • Chen, Chen;Sun, Tiezhi;Wei, Yingjie;Wang, Cong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.495-509
    • /
    • 2019
  • The objective of this study is to analyze the compressibility effects of multiphase cavitating flow during the water-entry process. For this purpose, the water-entry of a projectile at transonic speed is investigated computationally. A temperature-adjusted Tait equation is used to describe the compressibility effects in water, and air and vapor are treated as ideal gases. First, the computational methodology is validated by comparing the simulation results with the experimental measurements of drag coefficient and the theoretical results of cavity shape. Second, based on the computational methodology, the hydrodynamic characteristics of flow are investigated. After analyzing the cavitating flow in compressible and incompressible fluids, the characteristics under compressible conditions are focused upon. The results show that the compressibility effects play a significant role in the development of cavitation and the pressure inside the cavity. More specifically, the drag coefficient and cavity size tend to be larger in the compressible case than those in the incompressible case. Furthermore, the influence of entry velocities on the hydrodynamic characteristics is investigated to provide an insight into the compressibility effects on cavitating flow. The results show that the drag coefficient and the impact pressure vary with the entry velocity, and the prediction formulas for drag coefficient and impact pressure are established respectively in the present study.

A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment

  • Hajmohammad, Mohammad Hadi;Zarei, Mohammad Sharif;Farrokhian, Ahmad;Kolahchi, Reza
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.299-321
    • /
    • 2018
  • A layerwise shear deformation theory is applied in this paper for buckling analysis of piezoelectric truncated conical shell. The core is a multiphase nanocomposite reinforced by carbon nanotubes (CNTs) and carbon fibers. The top and bottom face sheets are piezoelectric subjected to 3D electric field and external voltage. The Halpin-Tsai model is used for obtaining the effective moisture and temperature dependent material properties of the core. The proposed layerwise theory is based on Mindlin's first-order shear deformation theory in each layer and results for a laminated truncated conical shell with three layers considering the continuity boundary condition. Applying energy method, the coupled motion equations are derived and analyzed using differential quadrature method (DQM) for different boundary conditions. The influences of some parameters such as boundary conditions, CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and temperature changes and external voltage are investigated on the buckling load of the smart structure. The results show that enhancing the CNTs weight percent, the buckling load increases. Furthermore, increasing the moisture and temperature changes decreases the buckling load.

단일 소프트 스위칭 셀을 가진 다상 Interleaved ZVT Boost 컨버터 (Multi-Phase Interleaved ZVT Boost Converter With a Single Soft-Switching Cell)

  • 이주승;황윤성;강승현;권만재;장은수;이병국
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.247-255
    • /
    • 2022
  • This paper proposes a multiphase interleaved zero-voltage-transition boost converter with a single soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell systems. The proposed single soft-switching cell structure can reduce the system volume by minimizing the passive and active elements added even in the multiphase-interleaved structure. To analyze the feasibility of the proposed structure, this paper mathematically analyzes the operation modes of the converter with the proposed single soft-switching cell structure and presents guidelines for design and considerations. In addition, the feasibility of the 210[kW] HDC was confirmed through PSIM simulation, and the system volume reduction of up to 10.48% was confirmed as a result of the 5[kW] HDC test-bed experiment considering the fuel cell system. Through this, the validity of the proposed structure was verified.

Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions

  • Fan, Linyuan;Kong, Degang;Song, Jun;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.29-45
    • /
    • 2022
  • The optimization for dynamic response associated with a cylindrical shell which is made of laminated composites embedded in a piezoelectric layer which is subjected to temperature rises and is resting on an elastic foundation is investigated for the first time. The first shear order theory (FSDT) is utilized in order to obtain the strain relations of the shell. Then, using the energy method, the equations of motions as well as boundary condition of the problem are attained. The formulation of this study together with the solution procedure which is a numerical solution method, differential quadrature method (DQM) is validated using other researches. This paper presents a thorough study on the parameters which impacts the vibration frequency of the laminated shell. The results of this paper shows that any type of laminated composite shell can reduce the vibration frequency providing that the angle related to layer are higher than 85 degrees. Also, in order to reduce the effect of temperature rises, the laminated composites instead of orthotropic one can be used.