• Title/Summary/Keyword: Multipath propagation

Search Result 147, Processing Time 0.026 seconds

Optimum Rake Processing for Multipath Fading in Direct-Sequence Spread-Spectrum Communication Systems (주파수대역 직접확산 통신시스템에서 다중경로 페이딩 보상을 위한 최적 레이크 신호처리에 관한 연구)

  • 장원석;이재천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.995-1006
    • /
    • 2003
  • It is well know that in the wireless communication systems the transmitted signals can suffer from multipath fading due to the wave propagation characteristics and the obstacles over the paths, resulting in serious reduction in the power of the received signals. However, it is possible to take advantage of the inherent diversity imposed in the multipath reception if the underlying channel can be properly estimated. One of the diversity reception methods in this case is Rake processing. In this paper we study the Rake receivers for the direct-sequence spread-spectrum communication systems utilizing PN (pseudo noise) sequences to achieve spread spectrum. A conventional Rake receiver can use the finite-duration impulse (FIR) filter followed by the PN sequence demodulator, where the FIR filter coefficients are the reverse-ordered complex conjugate values of the fading channel impulse response estimates. Here, we propose a new Rake processing method by replacing the aforementioned PN code sequence with a new set of optimum demodulator coefficients. More specifically, the concept of the new optimum Rake processing is first introduced and then the optimum demodulator coefficients are theoretically derived. The performance obtained using the new optimum Rake processing is also calculated. The analytical results are verified by computer simulation. As a result, it is shown that the new optimum Rake processing method improves the MSE performance more than 10 dB over the conventional one using the fixed PN sequence demodulator. It is also shown that the new optimum Rake processing method improves the MSE performance about 10 dB over the Adaptive Correlator that performs the combining of the multipath components and PN demodulation concurrently. And finally, the MSE performance of the optimum Rake demodulator is very close to the MSE performance of OPSK demodulator under the AWGN channel.

WMPS: A Positioning System for Localizing Legacy 802.11 Devices

  • Gallo, Pierluigi;Garlisi, Domenico;Giuliano, Fabrizio;Gringoli, Francesco;Tinnirello, Ilenia
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.106-116
    • /
    • 2012
  • The huge success of location-aware applications has called for the rapid development of an alternative positioning system to the global positioning system (GPS) for indoor localization based on existing technologies, such as 802.11 wireless networks. This paper proposes the Wireless MAC Processor Positioning System (WMPS), which is a localization system running on off-the-shelf 802.11 Access Points and based on the time-of-flight ranging of users' standard terminals. This paper proves through extensive experiments that the propagation delays can be measured with the accuracy required by indoor applications despite the different noise components that can affect the result: latencies of the hardware transreceivers, multipath, ACK jitters and timer quantization. Key to this solution is the choice of the Wireless MAC Processor architecture, which enables a straightforward implementation of the ranging subsystem directly inside the commercial cards without affecting the basic DCF channel access algorithm. In addition to the proposed measurement framework, this study developed a simple and effective localization algorithm that can work without requiring any preliminary calibration or device characterization. Finally, the architecture allows the measurement methodology to be adjusted as a function of the network load or propagation environments at the run time, without requiring any firmware update.

  • PDF

A Simulator Development of Generating Polarization Waves for The Indoor Wireless Communications (옥내 무선통신을 위한 편파발생 시뮬레이터 개발)

  • 이주현;하덕호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.872-878
    • /
    • 2003
  • In this paper, we developed a simulator which can generate the polarization waves for the indoor wireless communications based on three dimensional ray tracing technique and verified the simulation results comparing with the measured data in indoor wireless propagation environments. Using the developed simulator, we analyzed the channel characteristic and polarization diversity reception characteristic for the vertical, horizontal and circularly polarized waves. From the analysis results, in the case of using circularly polarized wave it can be clearly seen that the multipath fading is markedly reduced compared to the vertical and horizontal polarized waves due to the reception characteristic of removing the odd time reflected waves.

An Analysis of Electric-field Density into Mountain Area Using DTED (디지털 지도를 이용한 산악지형의 전계강도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Park, Young-Chul;Kim, Min-Nyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.852-857
    • /
    • 2006
  • This paper presents a precision method to calculate the electric field density of mountain area using digital terrain elevation data(DTED). Generally we calculate the electric field density of a point adding a direct field density and horizontal reflection field density between two points. In this paper, we consider a vertical reflection field density from vertical surface near the wave propagation line between transmitter and receiver. The vertical reflection electric field have different propagation path and polarization from a horizontal reflection field. And the total electric field density adding horizontal field density and vertical reflection value is more accurate than a direct path electrical field density or direct field density adding a horizontal reflection field density.

  • PDF

A Demodulation Method for DS/CDMA Systems (DS/CDMA 시스템을 위한 새로운 복조 방식)

  • Jung, Bum-Jin;Jin, Ming-Lu;Kwak, Kyung-Sup
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.212-224
    • /
    • 1998
  • There are two major factors of degrading the performance in the forward link of DS/CDMA systems. One is the multiple access interference (MAI) caused by using the same frequency bands simultaneously and the other is the multipath lading due to multipath propagation. PN codes which have minimum cross correlation properties among spread spectrum codes are necessary to reduce the MAI. In the conventional IS-95A system, the PN sequence has the period of $2^{15}$ and is of the length of 64 chips for spreading each data. In this case, since the length of PN code per bit is very short compared to the period of the PN code, the performance of the conventional system is not satisfied in view of suppressing the multipath interference. However, the correlation property of the PN codes at the demodulation can be improved by increasing the interval of Integration at the demodulation. This paper proposes a demodulation method to reduce the cross correlation among PN codes. The performance of the proposed demodulation method is investigated through computer simulations. We used multipath Ray lading channel and AWGN channel in the simulation. Our simulation results show the improved performance of $0.25{\sim}0.5dB$ SNR in a given BER compared to the conventional demodulation scheme.

  • PDF

Characteristics of Impulse Radios for Mu1tipath Channels (다중 경로 채널에서 임펄스 라디오의 특징)

  • 이호준;한병칠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1501-1509
    • /
    • 2001
  • Recently, the use of wireless communication systems has been rapidly increasing, which results in a difficult problem in efficient control of limited frequency resources. As a way of solving this problem, the ultra wideband time hopping impulse radio system attracts much attention. The impulse radio system communicates pulse position modulated data using Gaussian monocycle pulses of very short duration less than 1 nsec. Thus the transmitted signal has very low power spectral density and ultra wide bandwidth from near D.C. to a few GHz. It is blown that it hardly interferes with the existing communication systems because of its very low power spectral density. The purpose of this paper is to characterize multipath propagation of the impulse radio signal and to evaluate the performance of the correlator-based receiver for the multipath environments. In this paper, we consider the deterministic two-path model and the statistical indoor multipath model of Saleh and Valenzuela. For the two-path model the output of the correlator with the ideal reference waveform varies according to the relative difference between the indirect path delay and the time interval of PPM, and to the indirect path gains. In addition, the characteristics of bit error rates is measured for the two models through computer simulation. The simulation results indicate that the performance of the impulse radio system depends both on the relative difference between the indirect path delay and the time interval of PPM, and on the indirect path gains. Furthermore, it is observed that the reference signal designed for the AWGN channel can not be applied to the multipath channels.

  • PDF

A Study on the Propagation Path Considering the Horizontal Alignment of Road (도로의 평면선형을 고려한 전파경로 분석)

  • Kim, Song-Min
    • 전자공학회논문지 IE
    • /
    • v.44 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • This study was to suggest the predictive model of propagation, considering the effect by the multipath waves produced by the sending and receiving vehicles' left/right reflectors and the adjacent vehicles when the communication between the vehicles on the one-way two-lanes road in the urban city with a lot of traffic jams. Then, the radius of curved road was 600[m], the length of curved roads $52.4\sim471.2[m]$, and the bridge's pier of road was $5o\sim45o$. Also, it was simulated by changing the receiving vehicle located on the curved road's gap from minimum 3.3[m] to maximum 29.5[m], corresponding to the change of distance of the bridge's pier of road and curved road. As a result of this research above, in case of $5o\sim15o$ bridge's pier of road, it was within l[dB] regardless of the receiving vehicle's position on the curved road in case of propagation path loss. In case of $15o\sim45o$, it was approximately $1\sim8[dB]$ as the bridge's pier of road is changed. And, in case of propagation path, it found out that it was changed to $0.4\sim120[m]$ according to the change of bridge's pier of road. Then, the delay time of propagation was 400[nsec] as it produced 120[m] in the difference of propagation path.

Indoor Propagation Channel Modeling Using the Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 실내 전파 채널 모델링)

  • Chung, Sun-Oh;Lim, Yeong-Seog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1847-1853
    • /
    • 2011
  • Analysis of an indoor propagation channel has conventionally used the ray-tracing method. But, in this paper, we had modelling the channel for three dimensional indoor structure by the finite difference time domain method for three dimensional full wave analysis. An excitation signal of the FDTD method used plane wave. The plane wave was excited using the total field/scattered field method. And absorbing boundary condition used the perfectly matched layer method with 7 layers. An living room for the simulation of indoor channel modeling is surrounded the wall that be composed of the wood, the conductor, the glass and concrete. When there are furniture in the living room or not, it were simulated, respectively. As simulation results, we could identify the fading effect of multipath at indoor propagation environment, calculated mean excess delay and rms delay spread for the receiver design.

Equalizer Mode Selection Method for Improving Bit Error Performance of Underwater Acoustic Communication Systems (수중음향통신 시스템의 비트 오류 성능 향상을 위한 등화 모드 선택 방법)

  • Kim, Hyeon-Su;Seo, Jong-Pil;Kim, Jae-Young;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The linear and decision-feedback equalization can mitigate time-varying intersymbol interference (ISI) caused by time-varying multipath propagation for underwater acoustic channels. The perfect elimination of interference components, however, is difficult using the linear equalization and the decision feedback equalizer has an error propagation problem. To overcome these shortcomings, this paper proposes an equalizer mode selection method using training sequences. The proposed method selects an equalization mode corresponding to the signal-to-noise ratio (SNR). If the SNR is low, the proposed system operates the linear equalizer for preventing the error propagation and if the SNR is high, the decision feedback equalizer for eliminating the residual ISI. Therefore, the proposed method can improve the error performance compared to the conventional equalizers. The computer simulation shows the proposed method improves the bit error performance using practical underwater channels responses acquired from the sea experiment.

Low-Sampling Rate UWB Channel Characterization and Synchronization

  • Maravic, Irena;Kusuma, Julius;Vetterli, Martin
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.319-327
    • /
    • 2003
  • We consider the problem of low-sampling rate high-resolution channel estimation and timing for digital ultrawideband (UWB) receivers. We extend some of our recent results in sampling of certain classes of parametric non-bandlimited signals and develop a frequency domain method for channel estimation and synchronization in ultra-wideband systems, which uses sub-Nyquist uniform sampling and well-studied computational procedures. In particular, the proposed method can be used for identification of more realistic channel models, where different propagation paths undergo different frequency-selective fading. Moreover, we show that it is possible to obtain high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. Our approach leads to faster acquisition compared to current digital solutions, allows for slower A/D converters, and potentially reduces power consumption of digital UWB receivers significantly.