• Title/Summary/Keyword: Multipath Channel

Search Result 679, Processing Time 0.028 seconds

Bit Split Method for Efficient Channel Estimation in UWA Channel (수중 다중경로 채널에서 효과적인 채널추정을 위한 비트 분리 방법)

  • Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won;Yong, Chun-Seung;Sohn, Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2207-2214
    • /
    • 2010
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed split input bits of channel decoder using method of maximum value, average value, LLR value for optimal estimation. Channel coding method is LDPC(N size=16000) standard in DVB-S2. As shown in simulation results, the performance of LLR value method is better than other methods.

A Simulation Model of Multipath Fading Channels (다중 경로 페이딩 채널의 시뮬레이션 모델)

  • Im, Seung-Gak;Kim, Yun-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.3
    • /
    • pp.374-381
    • /
    • 1995
  • For designing radio communication systems, radio-channel effects must be considered in order to obtain the desired communication quality, transmitting power, transmission speed and bit error rate. In radio channel, one of major factors that degrade communication quality is multipath fading between transmitting and receiving points. Therefore, a channel model which can describe fading effects correctly is requested. This paper deals with the composition of the channel simulator model that describes multipath fading effects and delay times which occur in the channel. For the performance analysis of the proposed model, trandmitting signal is used in the simulation. From simulation results, it can be shown that probability density function. level crossing rates and average fading-duration time distribution of the faded receive signal are very similar with theoretic values.

  • PDF

A Study on Efficient Packet Design for Underwater Acoustic Communication (수중음향통신에서 효율적인 패킷 설계에 관한 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.631-635
    • /
    • 2012
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In this paper, in order to design an efficient packet structure, we employ channel coding scheme and phase recovery algorithm. For channel coding scheme, half rate LDPC channel coding scheme with N=1944 and K=972 was used. Also, decision directed phase recovery was used for correcting phase offset induced by multipath. Based on these algorithms, we propose length of data for optimal packet structure in the environment of oceanic experimentation.

Channel Transfer Function Estimation based on Delay and Doppler Profile for Underwater Acoustic OFDM Communication System

  • Shiho, Oshiro;Tomohisa, Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 2023
  • In this paper, we proposed Channel Transfer Function estimation based on Delay and Doppler Profile for underwater acoustic OFDM communication system. It improved the estimation accuracy of the channel transfer function by linear time interpolation the change of Scattered Pilot (SP) insertion frequency in the time direction and the time by Delay and Doppler profile that analyzes the multipath situation of the channel investigated the performance of interpolation by simulation and report it. Previous works is inserted SP every 4 OFDM. It was effective under the environment without multipath, but it has observed that the effect of CTF compensation has been lowered in multipath channel condition. In addition to be better when inserted SP every 2 OFDM. But the amount of sending data will be decrease. Therefore, we conducted research to improve 4 OFDM with new interpolator. A computer simulation was performed as a comparison of SP inserted every 4 OFDM, SP inserted every 2 OFDM, and 4 OFDM with new interpolator. the performance of the proposed system is overwhelmingly improved, and the performance is slightly improved even 64 QAM.

Pre-Coding Method for Underwater Digital Communications in a Multipath Channel (다중 전달 경로 채널에서의 수중 디지털 통신을 위한 선 처리 기법)

  • Kim, Tae-Woo;Hwang, A-Rom;Seong, Woo-Jae;Lim, Young-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.154-162
    • /
    • 2008
  • Signals in an underwater channel get distorted by multipath propagation. In this paper, pre-coding method is suggested which helps comprehending the signals with minimum equalization. The signals are transformed based on the knowledge of the impulse response of the channel. Proposed pre-coding method is tested by simulations based on the ray theory and through water tank experiments. In weak multipath environment, in case of an SNR of about 20 dB, BER is $10^{-3}{\sim}10^{-4}$, while in strong multipath environment, similar BER is achieved with SNR of about 30 dB. In order for the pre-coding method to be used for underwater vehicles, channel prediction method utilizing the waveguide invariant is suggested and tested.

BER Performance Analysis of Groupwise Iterative- Multipath Interference Cancellation(GWI-MPIC) Algorithm for Coherent HSDPA System (동기식 HSDPA시스템의 그룹단위 반복 다중경로 간섭제거 알고리즘의 오류율 성능해석)

  • 구제길
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.231-241
    • /
    • 2004
  • This paper drives the exact expression of bit error rate(BER) performance for groupwise iterative-multipath interference cancellation(GWI-MPIC) algorithm for cancelling multipath interference components in a coherent high-speed downlink packet access(HSDPA) system of W-CDMA downlink and the BER performance is evaluated by numerical analysis. The performance of GWI-MPIC is compared to the successive interference cancellation(SIC) algorithm for multipath components. From numerical results, the optimal average BER performance of weighting factor ${\beta}$$\_$h/ for interference cancellation is obtained at ‘${\beta}$$\_$h/=0.8’ and then this weighting factor is hereafter applied to other performance analysis. Numerical results showed that the average BER performance of GWI-MPIC algorithm is rapidly degraded at multipath L=6, but is revealed the good performance than that of SIC algorithm in terms of increasing the number of multipath. This results also indicated that the average BER performance is greatly degraded due to increasing interference power more than multicode K=8. The average BER performance of the proposed algorithm is superior to the performance of SIC algorithm about 3 ㏈ for processing gain PG=128 at multipath L=2 and Average BER=1.0${\times}$10$\^$-5/. And also, the results produced good performance in case of linear monotonic reduction of multipath fading channel gain than that of constant channel gain variation, because multipath fading channel gain which is arrived later is small.

A low power, low complexity IR-UWB receiver in multipath environments and its implementation (다중 경로 환경에 적합한 저전력 저복잡도의 IR-UWB 수신기 설계 및 구현)

  • Lee, Soon-Woo;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.24-30
    • /
    • 2007
  • In this paper, an energy detection-based low power, low complexity IR-UWB receiver in multipath impulse radio channel is presented. The proposed receiver has a simple 1-bit sampler for energy detection. Also, multipath signal received from multipath impulse radio channel is amplified and envelope of the signal is detected. Then, energy detection technique using integrator by summing multipath signals in certain period is adopted to minimize the BER loss by simple energy detection. In particular, in acquisition of a sample signal, SNR is additionally improved using a digital sampler. Symbol decision using several sampled signals is performed and thus the process of symbol synchronization is significantly simplified. Also, it is effectively designed to be compatible with influences of multipath and timing error. In addition, the proposed receiver complexity is reduced using pulse decision window. The performance of the proposed receiver is simulated based on IEEE 802.15.4a channel model and the algorithms are implemented on FPGA.

Effect of First and Second Order Channel Statistics on Queueing Performance (채널의 1차 2차 통계적 특성이 큐의 성능에 미치는 영향)

  • Kim, Young-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.288-291
    • /
    • 2002
  • We characterize multipath fading channel dynamics at the packet level and analyze the corresponding data queueing performance in various environments. We identify the similarity between wire-line queueing analysis and wireless network per-formance analysis. The second order channel statistics, i.e. channel power spectrum, is fecund to play an important role in the modeling of multipath fading channels. However, it is identified that the first order statistics, i.e. channel CDF also has significant impact on queueing performance. We use a special Markov chain, so-called CMPP, throughout this paper.

An Equalization Technique for OFDM Systems in Time-Variant Multipath Channels (시변 다중경로 페이딩 채널에서의 OFDM 등화기법)

  • Jeon, Won-Gi;Chang, Kyung-Hi;Cho, Yong-Soo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.9-18
    • /
    • 1998
  • In this paper, an equalization technique for OFDM(orthogonal frequency division multiplexing) in a time-variant multipath fading environment is described. A loss of subchannel orthogonality due to time-varying multipath fading channels leads to interchannel interference (ICI) which increases the error floor in proportion to Doppler frequency. A simple frequency-domain equalizer which can compensate the effect of ICI caused by time variation of multipath fading channel is proposed by modifying the previous frequency-domain equalization technique with taking into account only the ICI terms significantly affecting the error performance. The effectiveness of the proposed approach is demonstrated via computer simulation by applying it to OFDM systems when the multipath fading channel is slowly time variant.

  • PDF

Learning Automata Based Multipath Multicasting in Cognitive Radio Networks

  • Ali, Asad;Qadir, Junaid;Baig, Adeel
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.406-418
    • /
    • 2015
  • Cognitive radio networks (CRNs) have emerged as a promising solution to the problem of spectrum under utilization and artificial radio spectrum scarcity. The paradigm of dynamic spectrum access allows a secondary network comprising of secondary users (SUs) to coexist with a primary network comprising of licensed primary users (PUs) subject to the condition that SUs do not cause any interference to the primary network. Since it is necessary for SUs to avoid any interference to the primary network, PU activity precludes attempts of SUs to access the licensed spectrum and forces frequent channel switching for SUs. This dynamic nature of CRNs, coupled with the possibility that an SU may not share a common channel with all its neighbors, makes the task of multicast routing especially challenging. In this work, we have proposed a novel multipath on-demand multicast routing protocol for CRNs. The approach of multipath routing, although commonly used in unicast routing, has not been explored for multicasting earlier. Motivated by the fact that CRNs have highly dynamic conditions, whose parameters are often unknown, the multicast routing problem is modeled in the reinforcement learning based framework of learning automata. Simulation results demonstrate that the approach of multipath multicasting is feasible, with our proposed protocol showing a superior performance to a baseline state-of-the-art CRN multicasting protocol.