• 제목/요약/키워드: Multiobjective

검색결과 220건 처리시간 0.023초

FUZZY GOAL PROGRAMMING FOR MULTIOBJECTIVE TRANSPORTATION PROBLEMS

  • Zangiabadi, M.;Maleki, H.R.
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.449-460
    • /
    • 2007
  • Several fuzzy approaches can be considered for solving multi-objective transportation problem. This paper presents a fuzzy goal programming approach to determine an optimal compromise solution for the multiobjective transportation problem. We assume that each objective function has a fuzzy goal. Also we assign a special type of nonlinear (hyperbolic) membership function to each objective function to describe each fuzzy goal. The approach focuses on minimizing the negative deviation variables from 1 to obtain a compromise solution of the multiobjective transportation problem. We show that the proposed method and the fuzzy programming method are equivalent. In addition, the proposed approach can be applied to solve other multiobjective mathematical programming problems. A numerical example is given to illustrate the efficiency of the proposed approach.

Methods of pairwise comparisons and fuzzy global criterion for multiobjective optimization in structural engineering

  • Shih, C.J.;Yu, K.C.
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.17-30
    • /
    • 1998
  • The method of pairwise comparison inherently contains information of ambiguity, fuzziness and conflict in design goals for a multiobjective structural design. This paper applies the principle of paired comparison so that the vaguely formulated problem can be modified and a set of numerically acceptable weight would reflect the relatively important degree of multiple objectives. This paper also presents a fuzzy global criterion method ($FGCM_{\lambda}$) included fuzzy constraints that coupled with the objective weighting rank obtained from the modified pairwise comparisons for fuzzy multiobjective optimization problems. Descriptions in sequence of this combined method and problem solving experiences are given in the current article. Multiobjective design examples of truss and mechanical spring structures illustrate this optimization process containing the revising judgement techniques.

다목적함수 최적화를 위한 새로운 진화적 방법 연구 (A Study of New Evolutionary Approach for Multiobjective Optimization)

  • 심문보;서명원
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.987-992
    • /
    • 2002
  • In an attempt to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. This algorithm is based on Continuous Evolutionary Algorithms to solve single objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method fur fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Pareto-optimal tradeoff surface. Finally, the validity of this method has been demonstrated through a numerical example.

유전자 알고리즘을 이용한 축류 송풍기 설계최적화 (Design Optimization of Axial Flow Fan Using Genetic Algorithm)

  • 이상환;안철오
    • 한국유체기계학회 논문집
    • /
    • 제7권2호
    • /
    • pp.7-13
    • /
    • 2004
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution agree well to the designer's weighting values, we proposed new multiobjective function which was the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach is effective for the case that the quality of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

유전자 알고리즘을 이용한 축류 송풍기 설계최적화 (Design Optimization of Axial Flow Fan Using Genetic Algorithm)

  • 유인태;안철오;이상환
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.397-403
    • /
    • 2003
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution well agree to the designer's weighting values, we proposed new multiobjective function which is the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach will be effective for the case that the qualify of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

  • PDF

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

다중목적함수 진화 알고리즘을 이용한 마이크로어레이 프로브 디자인 (Microarray Probe Design with Multiobjective Evolutionary Algorithm)

  • 이인희;신수용;조영민;양경애;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권8호
    • /
    • pp.501-511
    • /
    • 2008
  • 프로브(probe) 디자인은 성공적인 DNA 마이크로어레이(DNA microarray) 실험을 위해서 필수적인 작업이다. 프로브가 만족시켜야 하는 조건은 마이크로어레이 실험의 목적이나 방법에 따라 다양하게 정의될 수 있는데, 대부분의 기존 연구에서는 각각의 조건에 대하여 각자 독립적으로 정해진 한계치(threshold) 값을 넘지 않는 프로브를 탐색하는 방법을 취하고 있다. 그러나, 본 연구에서는 프로브 디자인을 두가지 목적함수를 지닌 다중목적함수 최적화 문제(multiobjective optimization problem)로 정의하고, ${\epsilon}$-다중목적함수 진화 알고리즘(${\epsilon}$-multiobjective evolutionary algorithm)을 이용하여 해결하는 방법을 제시한다. 제시된 방법은 19종류의 고위험군 인유두종 바이러스(Human Papillomavirus) 유전자들에 대한 프로브 디자인과 52종류의 애기장대 칼모듈린 유전자군(Arabidopsis Calmodulin multigene family)에 대한 프로브 디자인에 각각 적용되었다. 제안한 방법론을 사용하여 기존의 공개 프로브 디자인 프로그램인 OligoArray 및 OligoWiz에 비해 목표유전사에 더 적합한 프로브를 찾을 수 있었다.

강화된 유전 알고리듬을 이용한 다극 및 다목적 최적화에 관한 연구 (A Study on Strengthened Genetic Algorithm for Multi-Modal and Multiobjective Optimization)

  • 이원보;박성준;윤인섭
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.33-40
    • /
    • 1997
  • 다극 및 다목적함수 최적화 문제를 해결하기 위해서 유전 알고리듬을 이용한 일반적인 최적화 도구인 APROGA II가 개발되었다. 우선 다극 최적화를 위해서는 다중선택집합탐색 알고리듬을 이용하였다. 두 번째로 다목적함수의 최적화를 위해서는 파레토 우성 토너먼트와 공유개념을 이용한 선택방법과 선택집합을 이용한 연속적인 세대교체법을 이용하여 새로운 알고리듬을 제안하였다. 이들 알고리듬을 이용하여 3개의 탐색엔진(APROGA 탐색엔진, 다극 탐색엔진 그리고 다목적함수 탐색엔진)을 가지고, 이진 및 이산 변수를 다룰 수 있는 APROGA II 시스템이 개발되었다. 그리고 여러 가지 검토함수들과 사례연구들을 적용시켜서 다극 탐색엔진의 성공적인 적용성을 확인하였다.

  • PDF

유연제조시스템의 공정계획을 위한 다목적 진화알고리듬 (A multiobjective evolutionary algorithm for the process planning of flexible manufacturing systems)

  • 김여근;신경석;김재윤
    • 한국경영과학회지
    • /
    • 제29권2호
    • /
    • pp.77-95
    • /
    • 2004
  • This paper deals with the process planning of flexible manufacturing systems (FMS) with various flexibilities and multiple objectives. The consideration of the manufacturing flexibility is crucial for the efficient utilization of FMS. The machine, tool, sequence, and process flexibilities are considered In this research. The flexibilities cause to increase the Problem complexity. To solve the process planning problem, an this paper an evolutionary algorithm is used as a methodology. The algorithm is named multiobjective competitive evolutionary algorithm (MOCEA), which is developed in this research. The feature of MOCEA is the incorporation of competitive coevolution in the existing multiobjective evolutionary algorithm. In MOCEA competitive coevolution plays a role to encourage population diversity. This results in the improvement of solution quality and, that is, leads to find diverse and good solutions. Good solutions means near or true Pareto optimal solutions. To verify the Performance of MOCEA, the extensive experiments are performed with various test-bed problems that have distinct levels of variations in the four kinds of flexibilities. The experiments reveal that MOCEA is a promising approach to the multiobjective process planning of FMS.

A Nonlinear Programming Approach to Biaffine Matrix Inequality Problems in Multiobjective and Structured Controls

  • Lee, Joon-Hwa;Lee, Kwan-Ho;Kwon, Wook-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.271-281
    • /
    • 2003
  • In this paper, a new nonlinear programming approach is suggested to solve biaffine matrix inequality (BMI) problems in multiobjective and structured controls. It is shown that these BMI problems are reduced to nonlinear minimization problems. An algorithm that is easily implemented with existing convex optimization codes is presented for the nonlinear minimization problem. The efficiency of the proposed algorithm is illustrated by numerical examples.