• Title/Summary/Keyword: Multimode

Search Result 221, Processing Time 0.023 seconds

Optical Sensor Based on Evanescent Field Coupling Between Side-Polished Polarization Maintaining Fiber and Planar Waveguide Coupler (측면 연마 편광 유지 광섬유와 평면 도파로 사이의 소산장 결합을 이용한 광센서)

  • Kim, Kwang-Taek;HwangBo, Sueng;Kang, Yong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.207-212
    • /
    • 2004
  • We have investigated the optical characteristics of a directional coupler made of a side-polished polarization maintaining fiber in contact with a multimode planar waveguide and its applications as sensors. A device structural condition to achieve the polarization insensitive wavelength response has been presented. The fabricated devices revealed a superior immunity to the bending and the deformation of PM fibers in the input section. It is experimentally shown that the proposed device is suitable for a remote fiber sensor.

인공심장판막의 현황

  • 김형묵
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.94-96
    • /
    • 1989
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

A field trial of helically wrapping fiber optic cable onto existing 154KV Phase conductor. (전력선을 이용한 광케이블 현장 실증 시험)

  • Shin, Keon-Hak;Lee, Won-Bin;Cho, Hong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.143-146
    • /
    • 1987
  • Fiber optics provide a solution to the problems at interference, capacity and reliability in communication. Approximately 20 kilometera of a six-fiber, multimode, longwave($1.3{\mu}m$), graded index silica glass fiber optic cable was helically wrapped around a phase conductor at a Korea Electric Power Corporation(KEPCO) 154KV transmission line. This paper presents an economic comparison of several fiber optic cable installation alternative and discusses the characteristics at the helically wrapped fiber cable, as well as the entire installation, including high voltage phase-to-ground (PTG) end termination, and splicing. The fiber link was installed for the field trial and practical use with overhead composite optical fiber cable which installation performed a few years earlier some other location and is intended to accommodate not only telephone but also supervisory Control and Data Acquisition(SCADA), protective relaying, and telemetry functions.

  • PDF

Distributed Temperature Measurement Based on Raman Backscattering Light (Raman 역산란광을 이용한 온도분포 계측특성)

  • Kim, Y.H.;Oh, S.K.;Park, H.S.;Lee, H.C.;Roh, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2447-2449
    • /
    • 1999
  • This paper presents a distributed temperature sensor which uses a multimode optical fiber. The temperature distribution is derived from the intensity of the Raman back scattering light. Testing the sensors on measurement length of 2km of this system shows good temperature characteristics of the heated/cooled section. These performance will useful to design such as monitoring abnormal temperature rise of electric facilities.

  • PDF

Design of Upstream Asymmetric 1.31/1.55um Wavelength Filter considered Efficient Output using Multimode Interference in Silica-on-silicon (Silica-on-silicon 다중 모드 간섭기에서 효율적인 출력을 고려한 상향 비대칭 1.31/1.55um 파장 여과기 설계)

  • 황준오;전진우;홍종균;이상선;이두한
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.164-165
    • /
    • 2003
  • 현재의 초고속 인터넷 서비스를 위한 광 인터넷의 기술 확산과 이들의 광통신 가입자망과의 연동으로 가입자 및 Hub 에서의 대규모 광 모듈 수요가 예상되고 있다. 이러한 광 모듈에서 필수적인 소자중의 하나가 파장 여과기이며, 그 수요 충족을 위해서는 소형화와 저가격화가 필수적이다. 이를 만족하기위해 실리카 기반의 다중모드간섭 소자를 이용한 파장 여과기가 개발중에 있다. 하지만, 일반적으로 광소자는 편광에 대한 문제점을 가지고 있기 때문에 이를 고려하지 않으면 출력 도파로에서 효율적인 출력파워를 얻어낼 수 없다. (중략)

  • PDF

Reflection-type Optical Waveguide Index Profiling Technique

  • Youk YoungChun;Kim Dug Young
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.49-53
    • /
    • 2005
  • We report a new configuration of a reflection-type confocal scanning optical microscope system for measuring the refractive index profile of an optical waveguide. Several improvements on the earlier design are proposed; a light emitting diode (LED) at 650 nm wavelength instead of a laser diode (LD) or He-Ne laser is used as a light source for better index precision, and a simple longitudinal linear scanning and curve fitting techniques are adapted instead of a servo control for maintaining an optical confocal arrangement. We have obtained spatial resolution of 700 nm and an index precision of $2\times10^{-4}$. To verify the system's capability, the refractive index profiles of a conventional multimode fiber and a home-made four-mode fiber were examined with our proposed measurement method.

Fabrication of a 1.3/l.55$\mu\textrm{M}$InGaAlAs/InP Dual Wavelength Demultiplexer Based on Multimode Interference(MMI) (다중모드 간섭효과를 이용한 1.3/1.55$\mu\textrm{M}$ InGaAlAs/InP 파장분배기의 제작)

  • Moon, Jeong-Yi;Yu, Jae-Su;Dong, Song-Jin;Kim, Jong-Min;Lee, Yong-Tik
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.34-35
    • /
    • 2001
  • The wavelength demultiplexer is an essential component in optical transmission systems using wavelength-division multiplexing(WDM), which can increase the number of channels and information capacity of optical fibers. For optical telecommunication, much attention has been given to demultiplexing two wavelengths in the 1.3${\mu}{\textrm}{m}$ of low dispersion band and 1.55${\mu}{\textrm}{m}$ of low loss window. Various integrated-optical devices have been proposed to perform this function, including conventional directional couplers, asymmetric Y-branching devices, asymmetric Mach-Zehnder interferometers and two-mode interference devices. (omitted)

  • PDF

Low-Loss Polymeric Waveguides Having Large Cores Fabricated by Hot Embossing and Micro-contact Printing Techniques

  • Yoon, Keun Byoung
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.474-477
    • /
    • 2004
  • We present simple, low-cost methods for the fabrication of polymeric waveguides that have large core sizes for use as optical interconnects. We have used both hot embossing and micro-contact printing techniques for the fabrication of multimode waveguides using the same materials. Rectangular and large-core (60${\times}$60 $\mu\textrm{m}$$^2$) channels were readily prepared when using these methods. The dimensions of the embossed and printed channels were the same as those of the pattern on the original master. The polymeric waveguides that we fabricated with large core sizes exhibited a low propagation loss of 0.1 dB/cm at 850 nm, which indicates that hot embossing and micro-contact printing are suitable techniques for the fabrication of optical waveguides having large-core.

Measurements of multimode characteristics including surface wave mode in a dielectrically loaded rectangular cavity (직육면체 캐비티의 다중 모드 특성및 표면파 모드 특성 측정)

  • 김채영;김윤명;라정웅
    • 전기의세계
    • /
    • v.28 no.4
    • /
    • pp.47-52
    • /
    • 1979
  • Total number of resonant modes in a microwave oven cavity may be maximized for a given frequency bandwidth to obtain more uniform power distribution by choosing proper size of the cavity. The total number of modes is calculated for a dielectrically loaded rectangular cavity and its size is suggested here for which the change in the number of modes is less sensitive to the change of dielectric layer thickness and its total number of modes is maximized in a given range of cavity sizes. A prove coupled rectangular cavity is constructed and the total existing modes are measured to see the change of modes depending on the dielectric layer thickness and the cavity size. Surface wave mode existing in the dielectric layer is confirmed by measuring Q and the input impedance of the cavity for this mode, which closely compares with the calculation.

  • PDF

Optical Microphone Incorporating a Dual-Core Multimode Fiber Block and a Reflective Micromirror (반사형 마이크로 미러와 다중모드 광섬유를 이용한 광마이크로폰)

  • Song, Ju-Han;Lee, Sang-Shin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.263-266
    • /
    • 2006
  • An optical microphone was developed using a dual-core multi-mode fiber block and a membrane type micromirror. The fiber block serves as a compact optical head, and the micromirror as a reflective diaphragm. The micromirror is designed to be suspended through a silicon bar connected t a frame, allowing for displacement induced by acoustic waves. The optical head is implemented by integrating two multi-mode fibers in a single block, and used to transfer light signals between it and the diaphragm. For the assembled microphone, its static characteristics were observed to reveal the operating point defined as the optimum distance between the optical head and the diaphragm. And its dynamic response was tested to exhibit a frequency bandwidth of 3 kHz with the variation of $\sim5dB$.