• Title/Summary/Keyword: Multimerization

Search Result 13, Processing Time 0.019 seconds

Different Functional and Structural Characteristics between ApoA-I and ApoA-4 in Lipid-Free and Reconstituted HDL State: ApoA-4 Showed Less Anti-Atherogenic Activity

  • Yoo, Jeong-Ah;Lee, Eun-Young;Park, Ji Yoon;Lee, Seung-Taek;Ham, Sihyun;Cho, Kyung-Hyun
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.573-579
    • /
    • 2015
  • Apolipoprotein A-I and A-IV are protein constituents of high-density lipoproteins although their functional difference in lipoprotein metabolism is still unclear. To compare anti-atherogenic properties between apoA-I and apoA-4, we characterized both proteins in lipid-free and lipidbound state. In lipid-free state, apoA4 showed two distinct bands, around 78 and $67{\AA}$ on native gel electrophoresis, while apoA-I showed scattered band pattern less than $71{\AA}$. In reconstituted HDL (rHDL) state, apoA-4 showed three major bands around $101{\AA}$ and $113{\AA}$, while apoA-I-rHDL showed almost single band around $98{\AA}$ size. Lipid-free apoA-I showed 2.9-fold higher phospholipid binding ability than apoA-4. In lipid-free state, $BS_3$-crosslinking revealed that apoA-4 showed less multimerization tendency upto dimer, while apoA-I showed pentamerization. In rHDL state (95:1), apoA-4 was existed as dimer as like as apoA-I. With higher phospholipid content (255:1), five apoA-I and three apoA-4 were required to the bigger rHDL formation. Regardless of particle size, apoA-I-rHDL showed superior LCAT activation ability than apoA-4-rHDL. Uptake of acetylated LDL was inhibited by apoA-I in both lipid-free and lipid-bound state, while apoA-4 inhibited it only lipid-free state. ApoA-4 showed less anti-atherogenic activity with more sensitivity to glycation. In conclusion, apoA-4 showed inferior physiological functions in lipid-bound state, compared with those of apoA-I, to induce more pro-atherosclerotic properties.

Inhibitory Effect of Ni2+ on the Tolaasin-induced Hemolysis (톨라신의 용혈활성에 대한 Ni2+의 저해효과)

  • Choi, Tae-Keun;Wang, Hee-Sung;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • The bacterial toxin, tolaasin, causes brown blotch disease on the cultivated mushrooms by collapsing fungal and fruiting body structure of mushroom. Cytotoxicity of tolaasin was evaluated by measuring hemolytic activity because tolaasins form membrane pores on the red blood cells and destroy cell structure. While we investigated the inhibitions of hemolytic activity of tolaasin by $Zn^{2+}$ and $Cd^{2+}$, we found that $Ni^{2+}$ is another antagonist to block the toxicity of tolaasin. $Ni^{2+}$ inhibited the tolaasin-induced hemolysis in a dose-dependent manner and its Ki value was $\sim10$ mM, implying that the inhibitory effect of $Ni^{2+}$ is stronger than that of $Cd^{2+}$. The hemolytic activity was completely inhibited by $Ni^{2+}$ at the concentration higher than 50 mM. The effect of $Ni^{2+}$ was reversible since it was removed by the addition of EDTA. When the tolaasin-induced hemolysis was suppressed by the addition of 20 mM $Ni^{2+}$, the subsequent addition of EDIA immediately initiated the hemolysis. Although the mechanism of $Ni^{2+}$ -induced inhibition on tolaasin toxicity is not known, $Ni^{2+}$ could inhibit any of fallowing processes of tolaasin action, membrane binding, molecular multimerization, pore formation, and massive ion transport through the membrane pore. Our results indicate that $Ni^{2+}$ inhibits the pore activity of tolaasin, the last step of the toxic process.

Suppression of brown blotch disease by tolaasin inhibitory factors (톨라신 저해 물질을 이용한 갈반병의 억제)

  • Yun, Yeong-Bae;Kim, Min-Hee;Han, Ji-Hye;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.179-184
    • /
    • 2017
  • Tolaasin, a 1.9 kDa peptide toxin, is produced by Pseudomonas tolaasii and causes the brown blotch disease of cultivated oyster mushroom. It forms pores on the membrane and thus destroys cellular membrane structure, seriously reducing the productivity of mushroom cultivation. The mechanism of tolaasin-induced cytotoxicity is not known in detail. However, it has been reported to form a pore structure in the cytoplasmic membrane through the molecular multimerization. Therefore, food additives which can interact with tolaasin molecules may inhibit the pore formation by hydrophobic interactions with tolaasin molecules. In this study, various food additive materials have been identified as inhibitors of the tolaasin activity and named tolaasin-inhibitory factors (TIF). Most of TIFs are emulsifying agents for food processing procedures. Among various TIFs, polyglycerol and sucrose esters of fatty acids blocked effectively the cytotoxicity of tolaasins at the concentrations $10^{-4}-10^{-5}M$. These TIFs also successfully suppressed the blotch disease development in the shelf cultivation of oyster mushroom.