• Title/Summary/Keyword: Multimedia Environmental Model

Search Result 54, Processing Time 0.017 seconds

A Single Cell Multimedia Fate Model for Endocrine Disrupting Chemicals

  • Park, Kyunghee;Junheon Youn;Daeil Kang;Lee, Choong;Lee, Dongsoo;Jaeryoung Oh;Sunghwan Jeon;Jingyun Na
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.149-149
    • /
    • 2003
  • To understand environmental paths of the transport and accumulation of endocrine disrupting chemicals (EDCs), a single cell multimedia fate model has been constructed and evaluated. The EDCs of concern were PAHs, Organochlorine Pesticides (OCPs), PCBs, Alkyl phenols, and phthalates. An evaluation model was designed for the multimedia distribution, including air, water, soil, sediment and vegetation. This model was verified using reported values and via monitoring data. Based on collected data, the distribution trends of EDCs with respect to environmental media were analyzed. Those results have applied to the model for the prediction of the spatial and temporal distribution of EDCs in Seoul. Especially, phenol compound, phthalates, PAHs, PCBs and organochlorine pesticides were estimated and the model was verified. This model was successfully conducted to environmental media, such as air (vapor and suspended particles), soils (forest soil, bare soil, and cement-concrete covered soil), water (dissolved and suspended solids), sediment, trees (deciduous and coniferous). The discrepancies between the model prediction and the measured data are approximately within or near a factor of 10 for the PAHs of three rings through that of six rings, implying that multimedia distribution of the PAHs could be predicted with a factor of 10. Concerning about the air equilibrium may be assumed, a fugacity at steady state is similar in all environmental media. Considering the uncertainties of this model, the use of equilibrium models may be sufficient for assessing chemical fates. In this study, a suggestion was made that modeling and estimation of chemicals in environmental multimedia be rigorously evaluated using the measured flux data. In addition, these data should be obtained, for example, from the precise and standardized inventory of the target chemicals. The model (EDC Seoul) will be refined in an on-going research effort and will be used to support decision-making concerning the management of EDCs.

  • PDF

Evaluation of n multimedia fate model, POPsME for PAHs

  • Lee, Yunah;Lee, Dong-Soo;Kim, Seung-Kyu;Kim, Yoon-Kwan;Kim, Dong-Won
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.31-32
    • /
    • 2003
  • A dynamic multimedia model with 2-dimensional spatial resolution, POPsME (Persistent Organic Pollutants in Multimedia Environments), was evaluated by comparing predicted relative concentrations with those measured. A total of 12 polycyclic aromatic hydrocarbons (PAHs) were tested (phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benz (a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene). The concentrations were measured in air particulates, water (dissolved phase and suspended solids (ss)), soil, sediment, and leaves of Pinus koraiensis and Prunus serrulata at seven sites in the Seoul and neighboring area (150km x 150km), Korea.

  • PDF

Prediction of Concentrations and Congener Patterns of Polychlorinated Biphenyls in Korea Using Historical Emission Data and a Multimedia Environmental Model (장기 배출량 자료와 다매체 환경모델을 이용한 국내 대기 중 PCB 농도 및 패턴 예측)

  • Choi, Sung-Deuk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.249-258
    • /
    • 2008
  • Historical emission data for 11 polychlorinated biphenyls (PCBs) and a regional multimedia environmental model, CoZMo-POP 2, were used to predict air concentrations and congener patterns in Korea. The total emission value for South Korea was allocated to sub-provinces and cities based on their population. The spatial distribution of PCB emissions was generally correlated with that of measured atmospheric levels, suggesting that population could be a good surrogate for the intensity of PCB emission in Korea. The simulated time trends of air concentrations well reflected those of emission with a peak in the mid-1970s and insignificant levels in the 2030s. The model predicted that the contribution of volatile PCBs had increased after emission reduction iii the 1970s. This trend would continue until the early 2030s. The measured and modeled PCB levels in the 2000s were in an agreement of an order of magnitude, and their congener patterns were very similar. Consequently, despite of high uncertainty for emission estimates, the emission data for Korea used in this study is considered to be reliable. The results of this study could be compared with simulation data based on a new emission inventory to be developed by measurements in the near future.

Development and Evaluation of the KOrea Insecticide Exposure Model (KOIEM) for Managing Insecticides

  • Jung, Ja-Eun;Lee, Yong-Ju;Kim, Yoon-Kwan;Lee, Sung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1183-1189
    • /
    • 2012
  • The KOrea Insecticide Exposure Model (KOIEM) was developed to facilitate ecological risk-based management of Korean insecticides. KOIEM, applied as a multimedia fate model, evaluates water, soil, air, and vegetation compartments based on three water-body types (streams, ditches, and ponds). Deltamethrin, a pyrethroid insecticide, was used to evaluate and create the model parameters. After exposure of both the stream and the ditch to deltamethrin, the KOIEM-predicted concentrations and the observed levels were in agreement. The model was also evaluated using the accuracy factor (AF), which was 4.32 and 0.35 for the stream and ditch, respectively. Ecological risk assessment was also performed to evaluate the application of KOIEM for four popular South Korean insecticides (cypermethrin, deltamethrin, diazinon, and permethrin). Despite the insecticides having low PECs in water, their risk quotients were typically above 1.0. Thus, KOIEM modification would be required in further studies to account for spatial variation.

Estimating Human Exposure to Benzo(a)pyrene through Multimedia/Multiroute Exposure Scenario (다매체/다경로 노출을 고려한 benzo(a)pyrene의 총 인체 노출량 예측)

  • Moon Ji Young;Yang Ji Yeon;Lim Young Wook;Park Seong Eun;Shin Dong Chun
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.4
    • /
    • pp.255-269
    • /
    • 2003
  • The objective of this study was to estimate human exposure to benzo (a)pyrene through multimedia/multi-pathway exposure scenario. The human exposure scenario for benzo(a)pyrene was consisted of 12 multiple exposure pathways, and the multipathway human exposure model based on this scenario constituted. In this study, the multipathway human exposure model was used to estimate the concentrations in the exposure contact media, human intake factors and lifetime average daily dose (LAD $D_{model}$) of benzo(a)pyrene in the environment. Sensitivity analysis was performed to identify the important parameters and Monte-Carlo simulation was undertaken to examine the uncertainty of the model. The total LAD $D_{model}$ was estimated to be 5.52${\times}$10$^{-7}$ mg/kg-day (2.06${\times}$10$^{-7}$ -8.65${\times}$10$^{-7}$ mg/kg-day) using the multipathway human exposure model. The inhalation dose accounted for 78% of the total LADD, whereas ingestion and dermal contact intake accounted for 20.2% and 1.8% of the total exposure, respectively. Based on the sensitivity analysis, the most significant contributing input parameter was benzo (a)pyrene concentration of ambient air. Consequently, exposure via inhalation in outdoor/indoor air was the highest compared with the exposure via other medium/pathways.

Estimation of Environmental Distribution for Benzoyl peroxide Using EQC Model

  • Kim, Mi-Kyoung;Bae, Heekyung;Kim, Su-Hyon;Song, Sanghwan;Koo, Hyunju;Kim, Hyun-Mi;Lee, Moon-Soon;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.150-151
    • /
    • 2003
  • Benzoyl peroxide is a high production volume chemical, which was produced about 1,375 tons/year in Korea as of 2001 survey. Most of them are used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. The substance is one of the sever chemicals of which human and environmental risks are being assessed by National Institute of Environmental Research under the frame of OECD SIDS Program. It has a melting point of 104-106 $^{\circ}C$ and has solubility of 9.1 mg/1 in water at 25 $^{\circ}C$. The substance was readily biodegradable (83 % after 21days) and had toxic effects to aquatic organisms. The range of 72 hr-EbC50 (biomass) for algae was 0.07-0.44 mg/1 and 48 hr-EC50 for daphnia was 0.07-2.91 mg/1. The LC50 of acute toxicity to fish was 0.24-2.0 mg/1. Although the toxic effects of benzoyl peroxide to aquatic organisms were investigated, environmental monitoring data were not studied. In this study, distribution of the chemical among multimedia environment was estimated using EQC model based on the physical-chemical properties to evaluate the risk of benzoyl peroxide in environment. In level I, II calculation the chemical was distributed to soil (68.3 %) and water (28.7 %). In level III calculation it was primarily distributed to soil (99.9 %) and overall residence time of 3.4 years was estimated. Benzoyl peroxide could be persistent in environment.

  • PDF

Prediction of Exposure and Risks of Environmental Pollutants via Emission Assessment and Multimedia Transport Modeling (배출량산정모델과 다중매질모델링을 이용한 환경오염물질의 노출평가 및 위해도 평가)

  • Kim, Jong Ho;Kwak, Byoung Kyu;Shin, Chee Burm;Jeon, Won Jin;Yi, Jongheop
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.248-257
    • /
    • 2009
  • In this paper, human exposure and risk of environmental pollutants were predicted using an emission assessment model and multimedia fate model. Eight environmental pollutants, acetaldehyde, acrylonitrile, aniline, benzene, carbon tetrachloride, dichloromethane, formaldehyde and vinyl chloride, were selected for the risk assessment in an urban and industrial area in Korea. The emission rate of target pollutants were estimated after considering a variety of point and non-point emission sources including geographical information. A spatially refined multimedia fate model was applied to predict the environmental concentration and fate of pollutants. Hazard data of target materials were obtained from the IRIS(Integrated Risk Information System) database. Using the modeling results with hazard data, the human risks were assessed. Modeling results demonstrate that the considerable risks were observed for several pollutants.

Sensitivity Analysis for a Level-III Multimedia Environmental Model: A Case Study for 2, 3, 7, 8-TCDD in Seoul (다매체환경거동모형 (level-III)의 민감도분석기법: 서울지역의 2, 3, 7, 8-TCDD 사례연구)

  • Kwon, Jung-Hwan;Lee, Dong-Soo
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.225-238
    • /
    • 2002
  • 유해물질의 거동에 대한 이해를 돕기 위해서 대도시지역을 대상으로 하여 fugacity를 이용한 level-III 다매체환경거동모형이 개발되었다. 이 모형에 의한 거동의 예측결과에 민감한 영향을 주는 입력과정과 변수들을 찾아내기 위하여 체계적으로 민감도분석을 수행할 수 있도록 하는 기법을 개발하고 사례연구로서 서울지역과 2, 3, 7, 8-TCDD을 대상으로 그 기법을 적용하였다. Sensitivity index에 의한 평가한 결과, 일정한 배출속도조건에서는 대기중의 바람속도, 그리고 대기에서 수체나 토양으로 전이되는 건식 및 습식 침적과정이 다매체거동에서 전체적으로 가장 중요한 과정인 것으로 나타났다. 또한 이들 거동과정 자체에 영향을 미치는 변수들에 대한 민감도 분석의 결과 건식침적의 경우 중력에 의한 입자들의 침강속도가, 습식침적의 경우 평균 강우속도가 대단히 중요한 변수임이 파악되었다. 물질의 물리화학적 특성 가운데에서는 z-값에 직접 영향을 주는 변수들, 즉, 헨리상수와 옥타놀-물 분배계수 등이 결과에 민감한 영향을 주는 것으로 나타났다. 이러한 사례연구는 본 연구에서 개발된 민감도분석기법이 유해물질의 다매체 거동모형을 개선하고 좀더 중요한 거동과정에 대한 이해를 넓히는데 효율적으로 사용될 수 있다는 것을 보여주고 있다.

Global Fate of Persistent Organic Pollutants: Multimedia Environmental Modelling and Model Improvement (잔류성 유기오염물질의 전 지구적 거동: 다매체 환경모델의 결과해석 및 개선방안)

  • Choi, Sung-Deuk;Chang, Yoon-Seok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.24-31
    • /
    • 2007
  • Global fates of polychlorinated biphenyl(PCB) were investigated with a fugacity based multimedia transport and fate model, Globe-POP(persistent organic pollutant). The accumulation of PCB was directly affected by the emission patterns of PCB into the atmosphere and surface areas of environmental compartments. Partition coefficients and reaction rates also influenced on the accumulation patterns of PCB. The emission patterns of PCB in 10 climate zones were consistent for the past 70 years, while the contribution of PCB in high-latitude zones to the globe has increased by cold condensation. Considering the amounts of emission and accumulation of PCB, the North temperature zone is regarded as an important source and sink of PCB. Meanwhile, in spite of no significant sources, POPs accumulate in Antarctic environments mainly due to extremely low temperature. Finally we suggested that a global water balance accounting for snow/ice should be incorporated into multimedia environmental models for high-latitude zones and polar regions with the seasonal snow pack and/or permanent ice caps. The modified model will be useful to evaluate the influence of climate change on the fate of POPs.

Prediction of Inhalation Exposure to Benzene by Activity Stage Using a Caltox Model at the Daesan Petrochemical Complex in South Korea (CalTOX 모델을 이용한 대산 석유화학단지의 활동단계에 따른 벤젠 흡입 노출평가)

  • Lee, Jinheon;Lee, Minwoo;Park, Changyong;Park, Sanghyun;Song, Youngho;Kim, Ok;Shin, Jihun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.151-158
    • /
    • 2022
  • Background: Chemical emissions in the environment have rapidly increased with the accelerated industrialization taking place in recent decades. Residents of industrial complexes are concerned about the health risks posed by chemical exposure. Objectives: This study was performed to suggest modeling methods that take into account multimedia and multi-pathways in human exposure and risk assessment. Methods: The concentration of benzene emitted at industrial complexes in Daesan, South Korea and the exposure of local residents was estimated using the Caltox model. The amount of human exposure based on inhalation rate was stochastically predicted for various activity stages such as resting, normal walking, and fast walking. Results: The coefficient of determination (R2) for the CalTOX model efficiency was 0.9676 and the root-mean-square error (RMSE) was 0.0035, indicating good agreement between predictions and measurements. However, the efficiency index (EI) appeared to be a negative value at -1094.4997. This can be explained as the atmospheric concentration being calculated only from the emissions from industrial facilities in the study area. In the human exposure assessment, the higher the inhalation rate percentile value, the higher the inhalation rate and lifetime average daily dose (LADD) at each activity step. Conclusions: Prediction using the Caltox model might be appropriate for comparing with actual measurements. The LADD of females was higher ratio with an increase in inhalation rate than those of males. This finding would imply that females may be more susceptible to benzene as their inhalation rate increases.