• Title/Summary/Keyword: Multiloop Mechanism

Search Result 6, Processing Time 0.02 seconds

Component Modular Approach to Computer-Aided Kinematic Analysis for General Planar Uncoupled-Connected Multiloop Mechanisms (비결합 다관절 평면기구의 컴퓨터원용 운동해석을 위한 컴포넌트 모듈기법)

  • 신중호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1883-1897
    • /
    • 1993
  • Interactive computer-aided analysis of mechanical systems has recently been undergoing an evolution due to highly efficient computer graphics. The industrial implementation of state-of-the-art analytical developments in mechanisms has been facilitated by computer-aided design packages because these rigid-body mechanism analysis programs dramatically reduce the time required for linkage design. This paper proposes a component modular approach to computeraided kinematic motion analysis for general planar multiloop mechanisms. Most multiloop mechanisms can be decomposed into serveral components. The kinematic properties (position, velocity, and acceleration) of every node can then be determined from the kinematic analysis of the corresponding component modules by a closed-form solution procedure. In this paper, 8 types of modules are defined and formulations for kinematic analysis of the component modules are derived. Then a computer-aided kinematic analysis program is developed using the proposed approach and the solution procedure of an example shows the effectiveness and accuracy on the approach.

Dimensional Syntheris and Kinematic Analysis of RSCS-SSP Spatial Mechanism with use of the Displacement Matrix Method (변위행렬법을 이용한 RSCS-SSP 공간기구의 치수합성과 운동해석)

  • 강희용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.113-118
    • /
    • 1997
  • This paper presents the dimensional synthesis and kinematic analysis of the RSCS-SSP motion generating spatial mechanism using the displacement matrix method. This type of spatial mechanisms is used for the Mcpherson suspension in small automobiles. It is modeled for the wheel bump/rebound and steering motion. First, the suspension is modeled as a multiloop spatial rigid body guidance mechanism for the two major motions. Then the design equations for SSP, RS, and SC strut links are applied to synthesize an RSCS-SSP for up to three prescribed positions for the steering motiom from the suspension design specification. Thus a RSCS-SSP mechanism which is synthesized is also analyzed for the displacement during the steering motion.

  • PDF

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION BY MULTILOOP EDGEWISE ARCH WIRE (Multiloop Edgewise Arch Wire가 야기하는 응력분포에 관한 광탄성학적 연구)

  • Yeom, Jeong Bae;Rhee, Byung Tae
    • The korean journal of orthodontics
    • /
    • v.20 no.2
    • /
    • pp.267-280
    • /
    • 1990
  • The purpose of this study was to investigate the force mechanism of Multiloop Edgewise Arch Wire and the intensity and distribution of stresses with vertical and intermaxillary elastics. The obtained results were as follows. 1. When plain wires were inserted and vertical and intermaxillary elastics were used in the upper and lower arch, the stresses of the anterior and posterior ends of wires were observed greatly but the stresses of the premolar were very small. 2. When MEAW were inserted in upper and lower arch, the upper 1st and 2nd premolar and the lower 1st premolar were extruded greatly. 3. In the area of the upper 1st molar and the lower 2nd premolar and the lower 1st molar, any stresses were not observed. 4. The vertical elastic counteracted the intrusion force of the MEAW in the anterior teeth but could not affect on posterior teeth. Using with the Class II elastics, the distal tipping force and extrusion force were exerted in the upper anterior teeth and the intrusion forces of the lower anterior teeth were relieved. Using with the Class III elastics, the extrusion force were exerted in the upper and lower anterior teeth, the distal tipping force were increased in the lower posterior teeth. 5. The Class II elastic counteracted the anterior intrusion force of the MEAW and extruded and tipped mesially the lower 2nd molar. The intrusion force of the MEAW also could not overcome the extrusion force of the class II elastics. 6. When the Class III elastics were engaged, the upper 2nd molar was extruded in spite of the intrusion forces of the MEAW and the extrusion forces of the lower anterior teeth and distal tipping forces in the posterior teeth were observed.

  • PDF

The Diagnosis and Treatment of Anterior Openbite Malocclusion (전치부 개방교합의 진단과 치료)

  • Chang, Young-Il;Moon, Seong-Cheol
    • The korean journal of orthodontics
    • /
    • v.28 no.6 s.71
    • /
    • pp.893-904
    • /
    • 1998
  • There are varieties of severe malocclusions, which can be treated orthodontically, but with a great deal of effort. Anterior openbite, in particular, is one malocclusion thought to be more difficult to treat, and therefore, most of them have to be corrected by means of surgical intervention. To solve these problems, numerous studies pertinent to treatment modalities have been introduced with controversies on the effectiveness of treatment. Suggested treatment modalities for anterior openbite are based directly or indirectly on the neuromuscular and morphological features and on the etiologic and/or the environmental factors. Even though the vertical relationship of the face is increased due to the growth variation, the normal occlusal relationship can be achieved by the adequate dentoalveolar compensatory mechanism, but in the case of inadequate or negative dentoalveolar compensation, openbite is likely to be present. If the skeletal dysplasia is too severe to be solved by orthodontic treatment alone, combined treatment with surgery should be done to restore the function and the esthetics of the orofacial complex. In many cases, however, orthodontic alteration of the dentition pertinent to the given skeletal pattern with the proper diagnosis and treatment planning can bring satisfactory results. The treatment changes with the Multiloop Edgewise Archwire(MEAW) therapy occurred mainly in the dentoalveolar region and showed a considerable similarity to the natural dentoalveolar compensatory mechanism. In other words, the MEAW technique allows orthodontists to produce the natural dentoalveolar compensation orthodontically. Even if an openbite is corrected by the orthodontic dentoalveolar compensation suitable for the skeletal pattern, relapse may still occur by the persisting etiologic factors which originally prohibited the natural dentoalveolar compensation. The etiologic factors should be determined at the time of initial diagnosis and should be controlled during treatment and retention.

  • PDF

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION ON THE MULTILOOP EDGEWISE ARCH WIRE (Multiloop Edgewise Arch Wire의 응력분포에 대한 광탄성학적 연구)

  • Lee, Sheung-Ho;Kim, Jeong-Gee
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.969-982
    • /
    • 1994
  • This study was designed to investigate the stress distribution, intensity and force mechanism derived from the MEAW by photoelastic stress analysis of the artificial teeth and surrounding bone composed of photoelastic material(PL-3) The findings of this study were as follows, 1. In case of no elastic on the MEAW with tip back, the moderate stress was observed on the molar and canine area, and the light stress was observed on the other area. 2. In case of the vertical elastic on the plain A.W, and the MEAW without tip back, the great stress was observed on the lateral incisor area, but on the MEAW with tip back, the moderate stress was observed on the anterior area and molar area. 3. In case of the C III elastic on plain A.W., the stress was concentrated on the anterior area hanged by elastic but on the MEAW without tip back, the stress was transmitted equally from the anterior area to the posterior teeth area. On the MEAW with tip back, the great stress was observed on the anterior and molar area. 4. In case of the C III elastic on the plain A.W., the stress was concentrated on the posterior area hanged by elastic but on the MEAW without tip back, the stress was transmitted equally from the posterior area to the anterior area. On the MEAW with tip back, the great stress was observed on the posterior area and the moderate stress was observed on the anterior area.

  • PDF

Three-dimensional analysis of tooth movement in Class II malocclusion treatment using arch wire with continuous tip-back bends and intermaxillary elastics

  • Lee, Ji-Yea;Choi, Sung-Kwon;Kwon, Tae-Hoon;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.49 no.6
    • /
    • pp.349-359
    • /
    • 2019
  • Objective: The aim of this study was to analyze three-dimensional (3D) changes in maxillary dentition in Class II malocclusion treatment using arch wire with continuous tip-back bends or compensating curve, together with intermaxillary elastics by superimposing 3D virtual models. Methods: The subjects were 20 patients (2 men and 18 women; mean age 20 years 7 months ${\pm}$ 3 years 9 months) with Class II malocclusion treated using $0.016{\times}0.022-inch$ multiloop edgewise arch wire with continuous tip-back bends or titanium molybdenum alloy ideal arch wire with compensating curve, together with intermaxillary elastics. Linear and angular measurements were performed to investigate maxillary teeth displacement by superimposing pre- and post-treatment 3D virtual models using Rapidform 2006 and analyzing the results using paired t-tests. Results: There were posterior displacement of maxillary teeth (p < 0.01) with distal crown tipping of canine, second premolar and first molar (p < 0.05), expansion of maxillary arch (p < 0.05) with buccoversion of second premolar and first molar (p < 0.01), and distal-in rotation of first molar (p < 0.01). Reduced angular difference between anterior and posterior occlusal planes (p < 0.001), with extrusion of anterior teeth (p < 0.05) and intrusion of second premolar and first molar (p < 0.001) was observed. Conclusions: Class II treatment using an arch wire with continuous tip-back bends or a compensating curve, together with intermaxillary elastics, could retract and expand maxillary dentition, and reduce occlusal curvature. These results will help clinicians in understanding the mechanism of this Class II treatment.