• Title/Summary/Keyword: Multilayers

Search Result 425, Processing Time 0.027 seconds

Deposition of YBCO and STO/YBCO thin films using ArF PLD system (ArF PLD System을 사용한 YBCO 박막과 STO/YBCO 박막의 제작)

  • Jung, Tae-Bong;Jang, Ju-Euk;Kang, Joon-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.43-47
    • /
    • 1999
  • Instead of using KrF excimer lasers( ${\lambda}$ = 248 nm) in depositing oxide thin films, as in the most of the laboratories in Korea, we have used an ArF excimer laser( ${\lambda}$ = 197 nm) which has a shorter wavelength. By using a beam which has a shorter wavelength, we could obtain higher quality and smoother surface YBCO thin films. We fabricated YBCO thin films with the various substrate temperature conditions and analyzed the characteristics of these films. We also studied the charateristics of the films fabricated under the various conditions of the power of laser and the oxygen pressure. The characterization tools used in this work were a transport measurement setup, an XRD , and a SEM. We also fabricated STO/YBCO multilayers to use in SFQ devices fabrication. XRD patterns of the multilayers showed that the multilayer films were grown epitaxially.

  • PDF

Fabrication of Wafer-scale Polystyrene (2+1) Dimensional Photonic Crystal Multilayers Via the Layer-by-layer Scooping Transfer Technique

  • Do, Yeong-Rak;O, Jeong-Rok;Lee, Gyeong-Nam
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.1-11.1
    • /
    • 2011
  • We have developed a simple synthetic method for fabricating a wafer-scale colloidal crystal film of 2D crystals in a 1D stack based on a combination of two simple processes : the self-assembly of polystyrene (PS) nanospheres at the water-air interface and the layer-by-layer (LbL) scooping transfer technique. The main advantage of this approach is that it allows excellent control of the thickness (at a layer level) of the crystals and the formation of a vertical crack-free layer over a wafer-scale (4 inch). We investigate the optical and morphological properties of the PhC multilayers fabricated using various mono-sized colloidal crystals (250, 300, 350, 420, 580, 720, and 850 nm), and mixed binary colloidal crystals (300/350 and 250/350 nm).

  • PDF

Activation Volumes of Wall-Motion and Nucleation Processes in Co/Pd Multilayers

  • Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.35-39
    • /
    • 2000
  • The correlation between the activation volumes of wall-motion and nucleation processes in Co/Pd multilayers has been investigated. Each activation volume was estimated from the field dependence of the wall-motion speed and the nucleation rate, respectively, based on time-resolved domain patterns grabbed by a MOKE microscope system. Both the activation volumes are changed in the same manner around $0.2\sim1.1\times10^{-17}cm^3$ with changes in the multilayered structure. Interestingly, the correlation between the activation volumes is sensitive to the multilayered structure; the wall-motion activation volume is smaller than the nucleation activation volume for a sample having a smaller number of repeats and a thinner Co-layer thickness, and vice versa. The correlation is closely related with the contrasting reversal modes; the process having the smaller activation volume dominates.

  • PDF

Interfacial Properties in Cu-phthalocyanine-based Hybrid Inorganic/Organic Multilayers

  • Lee, Nyun Jong;Ito, Eisuke;Bae, Yu Jeong;Kim, Tae Hee
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.261-264
    • /
    • 2012
  • Interfacial properties of 5 nm MgO(001)/7 nm Fe(001)/1.8 nm MgO(001)/t nm Cu-phthalocyanine (CuPc) hybrid multilayers with t = 0, 1, 7, and 10 were investigated by using x-ray photoemission spectroscopy (XPS). Rather sharp interfacial properties were observed in the CuPc films grown on an epitaxial MgO/Fe/MgO(001) trilayer than a MgO/Fe(001) bilayer. This work suggests a new way to improve device performance of organic spintronic devices by utilizing an artificially grown MgO(001) thin layer.

Studies of Effects of Current on Exchange-Bias: A Brief Review

  • Bass, J.;Sharma, A.;Wei, Z.;Tsoi, M.
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • MacDonald and co-workers recently predicted that high current densities could affect the magnetic order of antiferromagnetic (AFM) multilayers, in ways similar to those that occur in ferromagnetic (F) multilayers, and that changes in AFM magnetic order can produce an antiferromagnetic Giant Magnetoresistance (AGMR). Four groups have now studied current-driven effects on exchange bias at F/AFM interfaces. In this paper, we first briefly review the main predictions by MacDonald and co-workers, and then the results of experiments on exchange bias that these predictions stimulated.

Tailoring Magnetic Interlayer Coupling Contribution via Lateral Confinement (가로 가둠을 통한 자성층간 결합 기여도 조절)

  • Lee, Dong Ryeol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.5
    • /
    • pp.149-153
    • /
    • 2016
  • In Fe/Gd multilayers, patterning effect on the interlayer coupling was studied by comparing patterned and unpatterned samples that were cut from a multilayer film. A comparative study of the two samples via temperature dependent Gd-specific magnetization vector using X-ray magnetic circular dichroism (XMCD) shows that the temperature dependence of the Gd magnetization vector can be modified in the patterned sample due to a competition between the patterning and antiferromagnetic interlayer coupling effects.

Study on the Evaluation for the Property of Mo-Si Multilayers (Mo/Si 다층박막의 특성 평가에 관한 연구)

  • 허성민;김형준;이동현;이승윤;이영태
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.15-18
    • /
    • 2001
  • The Mo/si multilayer for EUV lithography was deposited using magnetron sputtering system. The multilayers were characterized using the cross-sectional transmission electron microscope (TEM) and low/high angle X-ray diffraction (XRD). The microstructure of Mo and Si was highly textured structure and amorphous, respectively. The well-defined low angle XRD peaks implies a well-defined multilayer structure. The interfacial layer of Mo-on-Si was thicker than Si-on-Mo interfacial layer.

  • PDF

Effect of Bilayer Thickness on Hardness of Ag/Ni Nanoscale Multilayers (Ag/Ni 나노다층박막의 경도에 미치는 Bilayer 두께의 영향)

  • Kang Bong Cheol;Kim Hee Yeoun;Kwon Oh Yeol;Lim Byung Kyu;Hong Soon Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.23-26
    • /
    • 2004
  • Ag/Ni multilayers with different bilayer thickness between 3 and 100 nm produced by DC magnetron puttering have been studied by cross-sectional TEM and nanoindentation. The micrograph shows perfect layered structure with sharp interfaces between Ag and Ni layers. Absolute hardness is calculated as a reference value to compare hardness of specimens regardless of indent depth. A hardness enhancement of nearly $100\%$ over the rule-of-mixtures values, calculated from the measured hardness of single Ag and Ni thin films, is observed. The hardness increases with decreasing bilayer thickness until 8nm. This enhancement shows a good agreement with Hall-Petch relation using grain size (one half of the bilayer thickness) confined within a layer. The deformation behavior can be explained by dislocation pile-up in smaller grains.

  • PDF

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

Microstructural Observation of Cu/Cr Multilayers by Heat Treatment (열처리에 따른 Cu/Cr 다층 박막의 미세 조직 관찰)

  • 양혁수;김기범
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.376-385
    • /
    • 1995
  • Copper-chromium multilayers with a nominal bilayer thickness of about 400 $\AA$ (200 $\AA$ each) were prepared by dc magnetron sputtering and the evolution of microstructure during heat treatment was investigated by using x-ray diffractometry(XRD), Auger electron spectroscopy(AES) and transmission electron microscopy(TEM). It was observed that an amorphous phase with a thickness of about 40 $\AA$ was formed at the interfaces of the as-deposited Cu/Cr multilayered film using cross-sectional TEM. At elevated temperatures, the Cu(111) reflection showed increasing intensity and decreasing line-width as a result of copper grain growth. The intermixed amorphous phase disappeared after annealing at $250^{\circ}C$ for 1 h and the multilayer structure was stable up to $400^{\circ}C$ for 1 h annealing. At $600^{\circ}C$ annealing, it was observed that the multilayer structure was completely destroyed and copper and chromium phases were fully intermixed.

  • PDF