Browse > Article
http://dx.doi.org/10.4283/JMAG.2012.17.4.261

Interfacial Properties in Cu-phthalocyanine-based Hybrid Inorganic/Organic Multilayers  

Lee, Nyun Jong (Department of Physics, Ewha Womans University)
Ito, Eisuke (Flucto-Order Functions Research Team, RIKEN Advanced Science Institute)
Bae, Yu Jeong (Department of Physics, Ewha Womans University)
Kim, Tae Hee (Department of Physics, Ewha Womans University)
Publication Information
Abstract
Interfacial properties of 5 nm MgO(001)/7 nm Fe(001)/1.8 nm MgO(001)/t nm Cu-phthalocyanine (CuPc) hybrid multilayers with t = 0, 1, 7, and 10 were investigated by using x-ray photoemission spectroscopy (XPS). Rather sharp interfacial properties were observed in the CuPc films grown on an epitaxial MgO/Fe/MgO(001) trilayer than a MgO/Fe(001) bilayer. This work suggests a new way to improve device performance of organic spintronic devices by utilizing an artificially grown MgO(001) thin layer.
Keywords
inorganic/organic hybrid structure; interfacial properties; XPS; Cu-phthalocyanine film; organic spintronic devices;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Al-Sharmery, H.-G. Rubahn, and H. Sitter, Organic Nanostructures for Next Generation Devices, Springer, Berlin (2008) pp. 263-345.
2 F. Sawano, I. Terasaki, H. Mori, T. Mori, M. Watanabe, N. Ikeda, Y. Nogami, and Y. Noda, Nature 437, 522 (2005).   DOI   ScienceOn
3 Y.-S. Lai, C.-H. Tu, D.-L. Kwong, and J. S. Chen, Appl. Phys. Lett. 87, 122101 (2005).   DOI   ScienceOn
4 V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Nature Mater. 8, 707 (2009).   DOI   ScienceOn
5 Z. H Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427, 821 (2004).   DOI   ScienceOn
6 J.-W. Yoo, C.-Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, and A. J. Epstein, Nature Mater. 9, 638 (2010).   DOI   ScienceOn
7 W. J. M. Naber, S. Faez, and W. G. van der Wiel, J. Phys. D 40, R205 (2007).   DOI   ScienceOn
8 Y. Q. Zhan, X. J. Liu, E. Carlegrim, F. H. Li, I. Bergenti, P. Graziosi, V. Dediu, and M. Fahlman, Appl. Phys. Lett. 94, 053301 (2009).   DOI   ScienceOn
9 H. W. Choi, S. Y. Kim, W.-K. Kim, K. Hong, and J.-L. Lee, J. Appl. Phys. 100, 064106 (2006).   DOI   ScienceOn
10 T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, and J. S. Moodera, Phys. Rev. Lett. 98, 016601 (2007).   DOI   ScienceOn
11 Y. J. Bae, N. J. Lee, T. H. Kim, H. Cho, C. Lee, L. Fleet, and A. Hirohata, Nanoscale Research Letters 7, 650 (2012).   DOI   ScienceOn
12 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3, 868 (2004)   DOI   ScienceOn
13 W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. Maclaren, Phys. Rev. B 63, 054416 (2001).   DOI
14 S. J. Roosendaal, B. van Asselen, J. W. Elsenaar, A. M. Vredenberg, and F. H. P. M. Habraken, Surf. Sci. 442, 329 (1999).   DOI   ScienceOn
15 T. Yamashita and P. Hayes, J. Electron Spectrosc. Relat. Phenom. 152, 6 (2006).   DOI   ScienceOn
16 C. Ruby, B. Humbert, and J. Fusy, Surf. Interface Anal. 29, 377 (2000).   DOI
17 P. Casey, G. Hughes, E. O'Connor, R. D. Long, and P. K. Hurley, J. Phys.: Conference Series 100, 042046 (2008).   DOI   ScienceOn
18 G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers, John Wiley & Sons, Chichester (1992).