• Title/Summary/Keyword: Multilayered films

Search Result 125, Processing Time 0.043 seconds

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF

High-temperature Oxidation of the TiAlCrSiN Film (TiAlCrSiN 박막의 고온 산화 부식)

  • Lee, Dong-Bok;Kim, Min-Jeong;Abro, M.A.;Yadav, P.;Shi, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.107-107
    • /
    • 2016
  • TiCrAlSiN films were developed in order to improve the high-temperature oxidation resistance, corrosion resistance, and mechanical properties of conventional TiN films that are widely used as hard films to protect and increase the lifetime and performance of cutting tools or die molds. In this study, a nano-multilayered TiAlCrSiN film was deposited by cathodic arc plasma deposition. It displayed relatively good oxidation resistance at $700-900^{\circ}C$, owing to the formation protective oxides of $Al_2O_3$, $Cr_2O_3$, and $SiO_2$, and semiprotective $TiO_2$. At $1000^{\circ}C$, the increased temperature led to the formation of the imperfect oxide scale that consisted primarily of the outer ($TiO_2$,$Al_2O_3$)-mixed scale and inner ($TiO_2$, $Al_2O_3$, $Cr_2O_3$)-mixed scale.

  • PDF

SOFT MAGNETISM OF Co-Zr AND Fe-Co FILMS WITH LARGE SATURATION MAGNETIZATION

  • Suemitsu, Katsumi;Nakagawa, Shigeki;Naoe, Masahiko
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.628-633
    • /
    • 1996
  • Large saturation magnetization $4pM_s$ is essentially required for soft magnetic thin layers used in magnetic recording devices. Amorphous Co-based alloys and Fe-Co alloys may be regarded as one of the candidates for soft magnetic materials which possess large $4\piM_s$. Some preparation process to improve soft magnetism of these films were performed in this study. Addition of Ta seemed to be effective to change the magnetostriction constant $\lambda$ from positive value to negative one. The magnetoelastic energy $K_e$ is strongly dependent on $\lambda$. $(Co_{95.7}Zr_{4.3})_{100-x}Ta_x$ films with $K_e$ of negative value have sufficiently soft magnetic characteristics. $Fe_{90}Co_{10}$ alloy exhibits extremely large $4\piM_s$, of about 24 kG. Addition of N and Ta to $Fe_{90}Co_{10}$ films improved the soft magnetism of them. The $Fe_{82.0}Co_{7.6}Ta_{10.4}$:N/Ti multilayered films exhibit better soft magnetic properties and better thermal stability than Fe-Co-Ta:N singlelayer films.

  • PDF

Properties of PZT(80/20) Thick Films with the Variation of the Number of Solution Coatings (Solution 코팅횟수에 따른 PZT(80/20)후막의 특성)

  • Park, Sang-Man;Lee, Sung-Gap;Lee, Young-Hi;Bae, Seon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1418-1419
    • /
    • 2006
  • PZT(80/20) powder was prepared by a sol-gel method and PZT thick films were fabricated by the screen-printing method on the alumina substrates. The coating and drying procedure was repeated 4 times. And then the PZT(20/80) precursor solution was spin-coated on the multilayered thick films. A concentration of a coating solution was 0.5 mol/L and the number of coating was repeated from 0 to 6. The porosity of the thick films was decreased with increasing the number of coatings and the PZT thick films with 6-times coated showed the dense microstructure and thickness of about 60-65 ${\mu}m$. All PZT thick films showed the typical XRD patterns of a typical perovskite polycrystalline structure. The relative dielectric constant and the dielectric loss of the PZT-6 thick film were 275 and 3.5, respectively. And the PZT-6 film shows the remanent polarization of 22.1 $C/cm^2$ and coercive field of 13.7 kV/cm.

  • PDF

Nature of the Interfacial Regions in the Antiferromagnetically-coupled Fe/Si Multilayered Films

  • Moon, J.C.;Y.V. Kudryavtsev;J.Y.Rhee;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.174-174
    • /
    • 2000
  • A strong antiferromagnetic coupling in Fe/Si multilayered films (MLF) had been recently discovered and much consideration has been given to whether the coupling in the Fe/Si MLF system has the same origin as the metal/metal MLF. Nevertheless, the nature of the interfacial ron silicide is still controversial. On one hand, a metal/ semiconductor structure was suggested with a narrow band-gap semiconducting $\varepsilon$-FeSi spacer that mediates the coupling. However, some features show that the nature of coupling can be well understood in terms of the conventional metal/metal multilayered system. It is well known that both magneto-optical (MO) and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In this study, the nature of the interfacial regions is the Fe/Si multilayers has been investigated by the experimental and computer-simulated MO and optical spectroscopies. The Fe/Si MLF were prepared by rf-sputtering onto glass substrates at room temperature with the number of repetition N=50. The thickness of Fe sublayer was fixed at 3.0nm while the Si sublayer thickness was varied from 1.0 to 2.0 nm. The topmost layer of all the Fe/Si MLF is Fe. In order to carry out the computer simulations, the information on the MO and optical parameters of the materials that may constitute a real multilayered structure should be known in advance. For this purpose, we also prepared Fe, Si, FeSi2 and FeSi samples. The structural characterization of Fe/Si MLF was performed by low- and high -angle x-ray diffraction with a Cu-K$\alpha$ radiation and by transmission electron microscopy. A bulk $\varepsilon$-FeSi was also investigated. The MO and optical properties were measured at room temperature in the 1.0-4.7 eV energy range. The theoretical simulations of MO and optical properties for the Fe/Si MLF were performed by solving exactly a multireflection problem using the scattering matrix approach assuming various stoichiometries of a nonmagnetic spacer separating the antiferromagnetically coupled Fe layers. The simulated spectra of a model structure of FeSi2 or $\varepsilon$-FeSi as the spacer turned out to fail in explaining the experimental spectra of the Fe/Si MLF in both intensity and shape. Thus, the decisive disagreement between experimental and simulated MO and optical properties ruled out the hypothesis of FeSi2 and $\varepsilon$-FeSi as the nonmagnetic spacer. By supposing the spontaneous formation of a metallic ζ-FeSi, a reasonable agreement between experimental and simulated MO and optical spectra was obtained.

  • PDF

Analysis of Surface and Thin Films Using Spectroscopic Ellipsometry (Spectroscopic Ellipsometry를 이용한 표면 및 박막의 분석)

  • 김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.73-86
    • /
    • 1990
  • The technique of Spectroscopic Ellipsometry (SE) has been examined with emphasis on its inherent sensitivity to the existence of thin films or surface equivalents. A brief review of related theories like the Fresnel reflection coefficients, the effect of a multilayer upon reflectivities, together with the validity of the effective medium theory and the modelling procedure, is followed by a short description of the experimental setup of a rotating polarizer type SE as well as the necessful expressions which lead to tan and cos. Out of its numerous, successful applications, a few are exampled to convince a reader that SE can be applied to a variety of research fields related to surface, interface and thin films. Specifically, those are adsorption and/or desorption on metals or semiconductors, oxidation process, formation of passivation layers on an electrode, thickness determination, interface between semiconductor and its oxide, semiconductor heterojunctions, surface microroughness, void distribution of dielectric, optical thin films, depth profile of multilayered samples, in-situ or in-vitro characterization of a solid surface immersed in electrolyte during electrochemical, chemical, or biological treatments, and so on. It is expected that the potential capability of SE will be widely utilized in a very near future, taking advantage of its sensitivity to thin films or surface equivalents, and its nondestructive, nonperturbing characteristics.

  • PDF

Temperature Dependence of Magnetic State of Fe/Al Multilayered Films

  • Lee, S. J.;J. S. Baek;Kim, Y. Y.;W. Y. Lim;W. Abdul-Razzaq
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.93-95
    • /
    • 1997
  • We investigated the temperature dependence of magnetization of Fe/Al multilayers fabricated by dc magnetron sputtering system. As the temperature increased from 5 K in a low magnetic field (100G) the magnetization of the samples increased and made a broad peak at some critical temperature. Further increase of temperature decresed the magnetization as an ardinary ferromagnetic curve. Part of samples show rapid increase of magnetization at low temperature. A model developed in this study suggests that the biquadratic coupling yields such a rapidly increasing behavior of magnetization at low temperature.

  • PDF