• Title/Summary/Keyword: Multilayer structure

Search Result 478, Processing Time 0.025 seconds

The Effect of Multilayer Passivation Film on Life Time Characteristics of OLED Device (OLED소자의 수명에 미치는 다층 보호막의 영향)

  • Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.20-24
    • /
    • 2012
  • Multilayer passivation film on OLED with organic/inorganic hybrid structure as to diminish the thermal stress and expansion was researched to protect device from the direct damage of $O_2$ and $H_2O$ and improve life time characteristics. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The films consist of ITO(150 nm)/ELM200_HIL(50 nm)/ELM002_HTL(30 nm)/$Alq_3$: 1 vol.% Rubrene(30 nm)/$Alq_3$(30 nm) and LiF(0.7 nm)/Al(100 nm) which were formed in that order. Using LiF/$SiN_x$ as a buffer layer was determined because it significantly improved life time characteristics without suffering damage in the process of forming passivation film. Multilayer passivation film on buffer layer didn't produce much change in current efficiency, while the half life time at 1,000 $cd/m^2$ of OLED/LiF/$SiN_x$/E1/$SiN_x$ was 710 hours which showed about 1.5 times longer than OLED/LiF/$SiN_x$/E1 with 498 hours. futhermore, OLED/LiF/$SiN_x$/E1/$SiN_x$/E1/$SiN_x$ with 1301 hours showed about twice than OLED/LiF/$SiN_x$/E1/$SiN_x$ which demonstrated that superior characteristics of life time was obtained in multilayer passivation film. Through the above result, it was suggested using LiF/$SiN_x$ as a buffer layer could reduce the damage from the difference of thermal expansion coefficient in OLED with protective films, and epoxy layer in multilayer passivation film could function like a buffer between $SiN_x$ inorganic layers with relatively large thermal stress.

Analysis of Biocompatible TiO2 Oxide Multilayer by the XPS Depth Profiling

  • Jang, Jae-Myung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.156-156
    • /
    • 2017
  • In this work, analysis of biocompatible TiO2 oxide multilayer by the XPS depth profiling was researched. the manufacture of the TiO2 barrier-type multilayer was accurately performed in a mixed electrolyte containing HAp, Pd, and Ag nanoparticles. The temperature of the solution was kept at approximatively $32^{\circ}C$ and was regularly rotated by a magnetic stirring rod in order to increase the ionic diffusion rate. The manufactured specimens were carefully analyzed by XPS depth profile to investigate the result of chemical bonding behaviors. From the analysis of chemical states of the TiO2 oxide multilayer using XPS, the peaks are showed with the typical signal of Ti oxide at 459.1 eV and 464.8 eV, due to Ti 2p(3/2) and Ti 2p(1/2), respectively. The Pd-3d peak was split into Pd-3d(5/2) and Pd-3d(3/2)peaks, and shows two bands at 334.7 and 339.9 eV for Pd-3d3 and Pd-3d5, respectively. Also, the peaks of Ag-3d have been investigated. The chemical states consisted of the O-1s, P-2p, and Ti-2p were identified in the forms of PO42- and PO43-. Based on the results of the chemical states, the chemical elements into the TiO2 oxide multilayer were also inferred to be penetrated from the electrolyte during anodic process.The structure characterization of the modified surface were performed by using FE-SEM, and from the result of biological evaluation in simulated body fluid(SBF), the biocompatibility of TiO2 oxide multilayer was effective for bioactive property.

  • PDF

Effects of Bilayer Period on the Microhardness and Its Strengthening Mechanism of CrN/AlN Superlattice Coatings

  • Kim, SungMin;Kim, EunYoung;Kim, DongJun;La, JoungHyun;Lee, SangYul
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.257-263
    • /
    • 2012
  • CrN/AlN multilayer coatings with various bilayer periods in the range of 1.8 to 7.4 nm were synthesized using a closed-field unbalanced magnetron sputtering method. Their crystalline structure, chemical compositions and mechanical properties have been investigated with Auger electron spectroscopy, X-ray diffractometry, atomic force microscopy, nanoindentation, scratch tests. The properties of the multilayer coatings varied strongly depending upon the magnitude of the bilayer period. The multilayer coating with a bilayer period of 1.8 nm showed the maximum hardness and an elastic modulus of approximately 37.6 and 417 GPa, respectively, which was 1.54 times higher than the hardness predicted by the rule of mixture from the CrN and AlN coatings. The hardness of the multilayer coating increased as the bilayer period decreased, i.e. as the rotation speed increased. The Hall-Petch type relationship, hardness being related to (1/periodicity)$^{-1/2}$, suggested by Lehoczky was confirmed for the CrN/AlN multilayer coatings with bilayer period close to the 5-10 nm range. With decreasing bilayer period, the surface morphology of the films became rougher and the critical load of films for adhesion strength gradually decreased.

Preparation of Gold Nanoisland Arrays from Layer-by-Layer Assembled Nanoparticle Multilayer Films

  • Choi, Hyung-Y.;Guerrero, Michael S.;Aquino, Michael;Kwon, Chu-Hee;Shon, Young-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.291-297
    • /
    • 2010
  • This article introduces a facile nanoparticle self-assembly/annealing method for the preparation of nanoisland films. First, nanoparticle-polymer multilayer films are prepared with layer-by-layer assembly. Nanoparticle multilayer films are then annealed at $~500^{\circ}C$ in air to evaporate organic matters from the films. During the annealing process, the nanoparticles on the solid surface undergo nucleation and coalescence, resulting in the formation of nanostructured gold island arrays. By controlling the overall thickness (number of layers) of nanoparticle multilayer films, nanoisland films with various island density and different average sizes are obtained. The surface property of gold nanoisland films is further controlled by the self-assembly of alkanethiols, which results in an increased surface hydrophobicity of the films. The structure and characteristics of these nanoisland film arrays are found to be quite comparable to those of nanoisland films prepared by vacuum evaporation method. However, this self-assembly/annealing protocol is simple and requires only common laboratory supplies and equipment for the entire preparation process.

Equivalent Circuit Design of 2.4 GHz Band LTCC Bandpass Filters Using Multilayer Inter-Digital Resonators (적층 Inter-Digital 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • Sung Gyu-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.78-83
    • /
    • 2005
  • LTCC filters have been widely used to wireless terminals. They generally adopt the multilayer structure. Some of multilayer LTCC filters are made of symmetrical parallel-coupled lines and anti-symmetrical parallel-coupled lines to reduce the length of resonators. The equivalent circuit of parallel-coupled lines was analyzed and applied to bandpass filters using multilayer parallel-coupled line resonators. The three-pole bandpass filter with the center frequency of 2.45 GHz is designed by using the proposed equivalent circuit and the measured results have good agreement with the design results.

The Electro-optical Properties of Multilayer EL Devices with P3HT as Emitting layer (P3HT를 이용한 다층막 전계발광 소자의 전기-광학적 특성)

  • Kim, Dae-Jung;Kim, Ju-Seung;Kim, Jeong-Ho;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1018-1021
    • /
    • 2003
  • We have synthesized poly(3-hexylthiophene) and studied the optical properties of P3HT for applying to the red emitting materials of organic electroluminescent device. Usually, an organic EL device is composed of single layer like anode/emitting layer/cathode, but additional layer such as hole transport, electron transport and buffer layer is deposited to improve device efficiency. In this study, Multilayer EL devices were fabricated using tris(8-hydroxyquinolinate) aluminum($Alq_3$) as electron transport material, (N,N'-diphenyl-N,,N'(3-methylphenyl)-1,1'-biphenyl-4,4'diamine))(TPD) as hole transport/electron blocking materials and LiF as buffer layer. That is, a device structure of ITO/blending layer(TPD+P3HT)/$Alq_3$/LiF/Al was employed. In the Multilayer device, the luminance of $10{\mu}W/cm^2$ obtained at 10V. And, we present the experimental evidence of the enhancement of the Foster energy transfer interaction in emitting layer.

  • PDF

Structural and Electrical Properties of Sol-gel Derived BFO/PZT Thin Films with Variation of Solvents (솔-젤법으로 제작한 BFO/PZT 박막의 용매에 따른 구조적, 전기적 특성)

  • Cho, Chang-Hyun;Lee, Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.895-899
    • /
    • 2011
  • Multiferroic BFO/PZT(5/95) multilayer films were fabricated by spin-coating method on the Pt/Ti/$SiO_2$/Si substrate alternately using BFO and PZT(9/95) alkoxide solutions. The structural and dielectric properties were investigated with variation of the solvent and the number of coatings. All films showed the typical XRD patterns of the perovskite polycrystalline structure without presence of the second phase such as $Bi_2Fe_4O_3$. BFO/PZT multilayer thin films showed the typical dielectric relaxation properties with increase an applied frequency. The average thickness of 6-coated BFO/PZT multilayer film was about 600 nm. The dielectric properties such as dielectric constant, dielectric loss and remnant polarization were superior to those of single composition BFO film, and those values for BFO/PZT multilayer film were 1199, 0.23% and 12 ${\mu}C/cm^2$.

Transparent Conducting Multilayer Electrode (GTO/Ag/GTO) Prepared by Radio-Frequency Sputtering for Organic Photovoltaic's Cells

  • Pandey, Rina;Kim, Jung Hyuk;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.219-223
    • /
    • 2015
  • Indium free consisting of three alternating layers GTO/Ag/GTO has been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting electrodes and the structural, electrical and optical properties of the gallium tin oxide (GTO) films were carefully studied. The gallium tin oxide thin films deposited at room temperature are found to have an amorphous structure. Hall Effect measurements show a strong influence on the conductivity type where it changed from n-type to p-type at $700^{\circ}C$. GTO/Ag/GTO multilayer structured electrode with a few nm of Ag layer embedded is fabricated and show the optical transmittance of 86.48% in the visible range (${\lambda}$ = 380~770 nm) and quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$. The resultant power conversion efficiency of 2.60% of the multilayer based OPV (GAG) is lower than that of the reference commercial ITO. GTO/Ag/GTO multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

Enzyme Sensors Modified with Avidin/Biotin Systembased Protein Multilayers

  • Anzai, Jun-Ichi;Du, Xiao-Yan;Hoshi, Tomonori;Suzuki, Yasuhiro;Takeshita, Hiroki;Osa, Tetsuo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.591-596
    • /
    • 1995
  • Enzyme multilayers composed of avidin and biotin-labeled enzymes were prepared on the surface of electrode, through a strong affinity between avidin and biotin (binding constant: ca $10^{15} M^{-1}$). The enzyme multilayers were useful for the improvement of the performance characteristies of enzyme sensors. The output current of the enzyme sensors depended linearly on the number of enzyme layers deposited. Thus, lactate oxidase (LOx) and alcohol oxidase (AlOx) were deposited after being modified with biotin for constructing enzyme sensors sensitive to L-lactate and ethanol respectively. It was also possible to deposit two different kinds of enzymes successively in a single multilayer. The glucose oxidase (GOx) and ascorbate oxidase (AsOx) were built into a multilayer structure on a Platinum electrode. The GOx, AsOx multilayer-modified electrode was useful for the elimination of ascorbic acid interference of the glucose sensor.

  • PDF

The Reaction of Internal Electrodes with Bi$_2$O$_3$ in Multilayer ZnO Varistor (적층형 ZnO바리스터의 내부전극과 Bi$_2$O$_3$ 와의 반응)

  • Kim, Young-Jung;Kim, Hwan;Hong, Kook-Sun;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1121-1129
    • /
    • 1998
  • Reactions between Ag-Pd internal electrode materials and{{{{ { {Bi }_{2 }O }_{3 } }} in multilayer chip varistor were in-vestigated. For more than 1 mol%{{{{ { {Bi }_{2 }O }_{3 } }} in varistor composition internal electrode structure was destroyed due to the reaction between internal electrode and{{{{ { {Bi }_{2 }O }_{3 } }} But for typical varistor compositions (below 1 mol% of{{{{ { {Bi }_{2 }O }_{3 } }} content) microstructural changes around the internal electrode were not observed. However SEM-EDS and TEM-EDS analysis showed the uneven distribution of{{{{ { {Bi }_{2 }O }_{3 } }} in the internal electrode which was due to the migration of{{{{ { {Bi }_{2 }O }_{3 } }} to the electorde during sintering. As a results the nonlinear coefficient of multilayer varistor showed very large distribution as well as the breakdown voltage.

  • PDF