• Title/Summary/Keyword: Multilayer ceramic capacitors

Search Result 37, Processing Time 0.019 seconds

Proposal of the Energy Recovery Circuit for Testing High-Voltage MLCC (고전압 MLCC 시험을 위한 에너지 회수 회로 제안)

  • Kong, So-Jeong;Kwon, Jae-Hyun;Hong, Dae-Young;Ha, Min-Woo;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.214-220
    • /
    • 2022
  • This paper proposes a test device designed for developing a high-voltage multilayer ceramic capacitor (MLCC). The proposed topology consists of an energy recovery circuit for charging/discharging capacitor, a flyback converter, and a boost converter for supplying power and a bias voltage application to the energy recovery circuit. The energy recovery circuit designed with a half-bridge converter has auxiliary switches operating before the main switches to prevent excessive current from flowing to the main switches. A prototype has been designed to verify the reliability of target capacitors following the voltage fluctuation with a frequency range below 65 kHz. To conduct high root mean square (RMS) current to the capacitor as a load, the MLCC test was conducted after the topology verification was completed through the film capacitor as a load. Through the agreement between the RMS current formula proposed in this paper and the MLCC test results, the possibility of its use was demonstrated for high-voltage MLCC development in the future.

Miniaturized Multilayer Band Pass Chip filter for IMT-2000 (IMT-2000용 초소헝 적층형 대역 통과 칩 필터 설계 및 제작)

  • Lim Hyuk;Ha, Jong-Yoon;Sim, Sung-Hun;Kang, Chong-Yun;Choi, Ji-Won;Choi, Se-Young;Oh, Young-Jei;Kim, Hyun-Jai;Yoon, Seok-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.961-966
    • /
    • 2003
  • A Multi-Layer Ceramic (MLC) chip type Band-Pass Filter (BPF) using BiNb$\_$0.975/Sb$\_$0.025/ $O_4$ LTCC (Low Temperature Co-fired Ceramics) and MLC processing is presented. The MLC chip BPF has the benefits of low cost and small size. The BPF consists of coupled stripline resonators and coupling capacitors. The BPF is designed to have an attenuation pole at below the passband for a receiver band of IMT-2000 handset. The computer-aided design technology is applied for analysis of the BPF frequency characteristics. The attenuation pole depends on the coupling between resonators and the coupling capacitance. An equivalent circuit and structure of MLC chip BPF are proposed. The frequency characteristics of the manufactured BPF is well acceptable for IMT-2000 application.

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.

Effects of Chamber Pressure on Dielectric Properties of Sputtered MgTiO3 Films for Multilayer Ceramic Capacitors

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.374-378
    • /
    • 2010
  • $MgTiO_3$ thin films were prepared by r.f. magnetron sputtering in order to prepare miniaturized NPO type MLCCs. $MgTiO_3$ films showed a polycrystalline structure of ilmenite characterized by the appearance of (110) and (202) peaks. The intensity of the peaks decreased with an increase in the chamber pressure due to the decrease of crystallinity which resulted from the decrease of kinetic energy of the sputtered atoms. The films annealed at $600^{\circ}C$ for 60min. showed a fine grained microstructure without micro-cracks. The grain size and roughness of the $MgTiO_3$ films decreased with the increase of chamber pressure. The average surface roughness was 1.425~0.313 nm for $MgTiO_3$ films prepared at 10~70 mTorr. $MgTiO_3$ films showed a dielectric constant of 17~19.7 and a dissipation factor of 2.1~4.9% at 1MHz. The dielectric constant of the films is similar to that of bulk ceramics. The dielectric constant and the dissipation factor decreased with the increase of the chamber pressure due to the decrease of grain size and crystallinity. The leakage current density was $10^{-5}\sim10^{-7}A/cm^2$ at 200kV/cm and this value decreased with the increase of the chamber pressure. The small grain size and smooth surface microstructure of the films deposited at high chamber pressure resulted in a low leakage current density. $MgTiO_3$ films showed a near zero temperature coefficient and satisfied the specifications for NPO type materials. The dielectric properties of the $MgTiO_3$ thin films prepared by sputtering suggest the feasibility of their application for MLCCs.

A Study on the Dielectric Properties of the Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-Pb($Ni_\frac{1}{2}W_\frac{1}{2}$)$O_3$ Ceramics (Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-Pb($Ni_\frac{1}{2}W_\frac{1}{2}$)$O_3$세라믹의 유전특성에 관한 연구)

  • 유남산;류기원;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.65-67
    • /
    • 1990
  • In this study, (0.80-x)Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-Pb($Ni_\frac{1}{2}W_\frac{1}{2}$)$O_3$ 0.05$\leq$x$\leq$0.20) ceramics were fabricated by the mixed oxide method, the sintering temperature and time were 950∼1200[$^{\circ}C$], 2[hr], respectively. The dielectric and structural properties with composition and sintering temperature were investigated for the application as multilayer ceramic capacitors. Dielectric constant of 0.70PMN-0.2PT-0.10PNW composition with repeated calcination was increased rapidly. Increasing the Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-Pb($Ni_\frac{1}{2}W_\frac{1}{2}$)$O_3$ contents from 0.05 to 0.20 [mol], phase transition temperature was shifted from 68 to 2[$^{\circ}C$] and dielectric constant was decreased while sintered density was increased. In the specimens containing 0.10, 0.15[mol] of PNW, dielectri constants at room temperature were exhibited the highest values 11199, 10114, respectively. Resistivity of specimens were $10^{10}$$10^{12}$($\Omega$.m) and there was no dependence on sintering temperature and composition.

Vacuum Packaging of MEMS (Microelectromechanical System) Devices using LTCC (Low Temperature Co-fired Ceramic) Technology (LTCC 기술을 이용한 MEMS 소자 진공 패키징)

  • 전종인;최혜정;김광성;이영범;김무영;임채임;황건탁;문제도;최원재
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • In the current electronic technology atmosphere, MEMS (Microelectromechanical System) technology is regarded as one of promising device manufacturing technologies to realize market-demanding device properties. In the packaging of MEMS devices, the packaged structure must maintain hermeticity to protect the devices from a hostile atmosphere during their operations. For such MEMS device vacuum packaging, we introduce the LTCC (Low temperature Cofired Ceramic) packaging technology, in which embedded passive components such as resistors, capacitors and inductors can be realized inside the package. The technology has also the advantages of the shortened length of inner and surface traces, reduced signal delay time due to the multilayer structure and cost reduction by more simplified packaging processes owing to the realization of embedded passives which in turn enhances the electrical performance and increases the reliability of the packages. In this paper, the leakage rate of the LTCC package having several interfaces was measured and the possibility of LTCC technology application to MEMS devices vacuum packaging was investigated and it was verified that improved hermetic sealing can be achieved for various model structures having different types of interfaces (leak rate: stacked via; $4.1{\pm}1.11{\times}10^{-12}$/ Torrl/sec, LTCC/AgPd/solder/Cu-tube; $3.4{\pm}0.33{\times}10^{-12}$/ Torrl/sec). In real application of the LTCC technology, the technology can be successfully applied to the vacuum packaging of the Infrared Sensor Array and the images of light-up lamp through the sensor way in LTCC package structure was presented.

  • PDF

Implementation of Small Size Dual Band PAM using LTCC Substrates (LTCC를 이용한 Small Size Dual Band PAM의 구현)

  • Shin, Yong-Kil;Chung, Hyun-Chul;Lee, Joon-Geun;Kim, Dong-Su;Yoo, Jo-Shua;Yoo, Myong-Jae;Park, Seong-Dae;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.357-358
    • /
    • 2005
  • Compact power amplifier modules (PAM) for WCDMA/KPCS and GSM/WCDMA dual-band applications based on multilayer low temperature co-fired ceramic (LTCC) substrates are presented in this paper. The proposed modules are composed of an InGaP/GaAs HBT PAs on top of the LTCC substrates and passive components such as RF chokes and capacitors which are embedded in the substrates. The overall size of the modules is less than 6mm $\times$ 6mm $\times$ 0.8mm. The measured result shows that the PAM delivers a power of 28 dBm with a power added efficiency (PAE) of more than 30 % at KPCS band. The adjacent-channel power ratio (ACPR) at 1.25-MHz and 2.25-MHz offset is -44dBc/30kHz and -60dBc/30kHz, respectively, at 28-dBm output power. Also, the PAM for WCDMA band exhibits an output power of 27 dBm and 32-dB gain at 1.95 GHz with a 3.4-V supply. The adjacent-channel leakage ratio (ACLR) at 5-MHz and 10-MHz offset is -37.5dBc/3.84MHz and -48dBc/3.84MHz, respectively. The measured result of the GSM PAM shows an output power of 33.4 dBm and a power gain of 30.4 dB at 900MHz with a 3.5V supply. The corresponding power added efficiency (PAE) is more than 52.6 %.

  • PDF