• 제목/요약/키워드: Multilayer actuators

검색결과 42건 처리시간 0.028초

Degradation of 0.2PMN-0.8PZT Multilayer Ceramic Actuators

  • Song, Jae-Sung;Koh, Jung-Hyuk;Jeong, Soon-Jong;Wee, Sang-Bong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권1호
    • /
    • pp.6-9
    • /
    • 2005
  • Aging characteristics of 0.2PMN-0.8PZT multilayer ceramic actuators (MCA) has been investigated by applying both triangular wave function for unpoled and unipolar wave for poling. P-E hysteresis loops of the MCA had been distorted after about 90 million cycles running in triangular wave function. Effective electromechanical coupling coefficient was calculated in resonant and anti resonant frequencies. And pseudo-piezoelectric constant $d_{33}$ was also estimated from the strain versus electric field characteristics. The crack growth of MCA was clearly observed along to the boundary between electrode and inactive area. That results were thought due to the internal tensile stress came from both actuation of $d_{33}$ mode and motion of Poisson ratio.

PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR BY CONSIDERING THE SHAPE EFFECT

  • 위상봉
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.594-597
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of 0.2Pb(Mg1/3Nb2/3)O3-0.38PbZrO3-0.42PbTiO3 followed by lamination and burnout & co-firing processes. The actuators of 10 10 0.62 nm3 in size were formed in a way that 60 200 m thick ceramics were stacked alternatively with 5 m thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of 90o/180o domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF

적층형 세라믹 액츄에이터의 세라믹-전극간 계면이 전기적 특성에 미치는 영향에 대한 연구 (Effect of Ceramic-Electrode Interface on the Electrical Properties of Multilayer Ceramic Actuators)

  • 하문수;정순종;송재성;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제15권10호
    • /
    • pp.896-901
    • /
    • 2002
  • The polarization and strain behavior of multilayer ceramic actuators fabricated by tape casting using a PNN-PZT ceramics were investigated in association with electrode size and internal layer number. Spontaneous polarization and strain decreased with increasing electrode size. In addition, the increase of internal layer number brought reduced spontaneous polarization and increased the field-induced strain. Because the actuators structure is designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. To analyze the effect of ceramic-electrode interface, the diffraction intensity ratio of (002) to (200) planes was calculated from X-ray diffraction patterns of samples subjected to a voltage of 200 V. The diffraction intensity ratio of (002) to (200) planes was decreased with increasing electrode size and internal layer number. The diffraction intensity ratio and straining behavior analyses indicate that the Polarization and strain were affected by the amount of 90°domain decreasing with increasing electrode size and internal layer number. Consequently, the change of polarization and displacement with respect to electrode size and layer number is likely to be caused by readiness of the domain wall movement around the interface.

SHAPE EFFECT ON PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR

  • Wee, S. B.;Jeong, S. J.;Song, J. S.
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2003년도 추계학술대회 발표 논문집
    • /
    • pp.163-168
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of $0.2Pb(Mg_{1/3}Nb_{2/3)O_3-0.38PbZrO_3-0,42PbTiO_3$ followed by lamination and burnout & co-firing processes. The actuators of $10\times10\times0.6~2\textrm{mm}^3$ in size were formed in a way that $60 ~ 200\mu\textrm{m}$ thick were stacked alternatively with $5\mu\textrm{m}$ thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of $90^{\circ}$/$180^{\circ}$ domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF

Circular cylinder drag reduction using piezoelectric actuators

  • Orazi, Matteo;Lasagna, Davide;Iuso, Gaetano
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.27-41
    • /
    • 2014
  • An active flow control technique based on "smart-tabs" is proposed to delay flow separation on a circular cylinder. The actuators are retractable and orientable multilayer piezoelectric tabs which protrude perpendicularly from the model surface. They are mounted along the spanwise direction with constant spacing. The effectiveness of the control was tested in pre-critical and in post-critical regime by evaluating the effects of several control parameters of the tabs like frequency, amplitude, height, angular position and plate incidence with respect to the local flow. Measurements of the mean static pressure distribution around the cylinder were used to estimate the pressure drag coefficient. The maximum drag reduction achieved in the pre-critical regime was of the order of 30%, whereas in the post-critical regime was about 10%, 3% of which due to active forcing. Furthermore, pressure fluctuation measurements were performed and spectral analysis indicated an almost complete suppression of the vortex shedding in active forcing conditions.

분역회전이 강유전체 세라믹 액추에이터 내의 균열발생에 미치는 영향 (Effect of Domain Switching on Cracking in Ferroelectric Ceramic Actuators)

  • 정경문;김재연;범현규
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.113-119
    • /
    • 2005
  • A crack emanating from an internal electrode or a conducting damage path in ferroelectric ceramic actuators is analyzed. The boundary of the domain switching zone near the edge of the internal electrode in a ceramic multilayer actuator is determined based on the nonlinear electric theory. The stress intensity factor induced by a ferroelectric domain switching under small scale conditions is numerically obtained for flaws of various sizes near the electrode edge. It is found that stress intensity factor near the crack tip depends on the material property of the electrical nonlinearity.

적층형 세라믹 액츄에이터의 전기-기계거동 (Electro-mechanical properties of Multilayer Ceramic Actuators)

  • 정순종;고중혁;송재성;홍원표;최원종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.478-481
    • /
    • 2004
  • This study presents the combined effect of electric Held application and mechanical compressive stress loading on deformation in a multilayer ceramic actuator, designed with stacking alternatively 0.2(PbMn$\_$1/3/Nb$\_$2/3/O$_3$)-0.8(PbZr$\_$0.475/Ti$\_$0.525/O$_3$) ceramics and Ag-Pd electrode. The deformation behaviors were thought to be attributed to relative 180$^{\circ}$domain quantities which is determined by pre-loaded stress and electric field. The non-linearity of piezoelectricity and strain are dependent upon the young's modulus resulting from the domain reorientation.

  • PDF

Bender Typed Piezoelectric Multilayer Actuator

  • Ahn, Byung-Guk;Lee, Dong-Kyun;Han, Deuk-Young;Kang, Chong-Yoon;Park, Ji-Won;Kim, Hyun-Jai;Yoon, Seok-Jin
    • 한국세라믹학회지
    • /
    • 제40권3호
    • /
    • pp.225-228
    • /
    • 2003
  • A Bender typed Multilayer Actuator(BMA) for decreasing the depolarization effect was designed and fabricated. Unlike bimorph and multimorph actuators in which depolarization occurred, the BMA did not generate depolarization because the polarization and the electric field directions are the same. The simulated results indicate that higher displacement of the BMA can be achieved by increasing input voltage. Compared with the multimorph actuator, the proposed actuator is expected to extend a life time as well as acceptable voltage range.

저온소결 세라믹을 이용한 밴더형 적층 액츄에이터의 제작 (Bending Mode Multilayer Actuator Using Low Temperature Sintering Piezoelectric Ceramics)

  • 이주영;김상종;강종윤;김현재;이상렬;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.68-69
    • /
    • 2005
  • Low temperature ($\leq900^{\circ}C$) sintering piezoelectric ceramics $0.01Pb(Mg_{1/2}W_{1/2})O_3$-0.41Pb$(Ni_{1/3}Nb_{2/3})O_3-0.35PbTiO_3-0.23PbZrO_3+0.1wt%Y_2O_3+xwt%ZnO$ $(0{\leq}x{\leq}2.5)$ have been developed and investigated. The electromechanical coupling coefficient ($k_p$), piezoelectric constant ($d_{33}$), and mechanical quality factor ($Q_m$) have been measured to characterize the piezoelectric materials system. When 2.0 wt% ZnO is added, the properties of the system, $d_{33}$ = 559 pC/N, $k_p$ = 55.0 % and $Q_m$ = 73.4 are obtained which are very suitable for piezoelectric actuators. A bending mode multilayer actuator has been also developed using the materials which size is $27(L)\times9(W)\times1.07(t)mm^3$. The actuators are fabricated by multilayer ceramic (MLC) process and consist of24 layers and each layer thickness is $35{\mu}m$. At this time, the displacement of actuator was $100{\mu}m$ at 28V.

  • PDF