• 제목/요약/키워드: Multilayer Mirror

검색결과 24건 처리시간 0.022초

층 밀리 간섭계를 이용한 고체침지렌즈의 광학적 성능 평가 (Optical Performance Evaluation of SIL Assembly with Lateral Shearing Interferometer)

  • 이진의;김완진;최현;김태섭;윤용중;박노철;박영필
    • 정보저장시스템학회논문집
    • /
    • 제2권4호
    • /
    • pp.224-229
    • /
    • 2006
  • There has been studied flow to minimize the spot size to increase data capacity. Optical data storage devices are being developed near practical limits with wavelength and NA of 405nm and 0.85. There has been studied many types of next generation storage devices such as blu-ray multilayer system, probe based data storage and holographic data storage. Among these data storage devices, solid immersion lens(SIL) based near field recording (NFR) has been widely studied. In this system, SIL is the key component that focuses the laser beam with a very small size which enables ultra high data capacity. Therefore, optical performance evaluation system is required for SIL assembly. In this dissertation, a simple and accurate SIL assembly measurement method is proposed with wedge plate lateral shearing interferometer(LSI). Wedge plate LSI is cheaper than commercialized interferometer, robust to the vibration and the moving distance for phase shifting is large that is order of micrometer. We designed the thickness, wedge angle, material, surface quality and wavelength of wedge plate as 1mm, 0.02degree, fused silica, lamda/10(10-5) and 405nm, respectively. Also, we confirmed simulation and experimental results with quantitative analysis. This simple wedge plate LSI can be applied to different types of SIL such as solid immersion mirror(SIM), hemispherical, super-hemispherical and elliptical SIL.

  • PDF

유전체 박막 거울 내장형 광섬유 결합기 (Dielectric Thin Film Mirror Embedded Optical Fiber Couplers)

  • 신종덕
    • 한국광학회지
    • /
    • 제4권4호
    • /
    • pp.420-427
    • /
    • 1993
  • 융착 접속 기술을 이용하여 다중모우드 광섬유와 단일 모우드 광섬유내에 유전체 박막 거울을 제작하였다. $45{\circ}$ 유전체 거울이 내장된 광섬유는 극소형이며, 광학적인 손실이 매우 작고(1.3 ${\mu}m$에서, 다중 모우드 광섬유의 경우 0.2dB, 단일 모우드 광섬유의 경우 0.5dB), 기계적 강도가 우수한 결합기로 사용될 수 있다. 반사율은 파장에 따라 변화하며, 편광에 매우 민감하였다. 백색광을 사용하여 유전체 거울로부터 반사되는 출력 파워를 원거리 스캔하며 측정하였을 때 출력 빔의 모양은 거의 원형 대칭으로써 최대 파워의 5%에서 측정된 종횡비는 1.09이었다. 다이오우드 레이저 광원을 사용하여 측정한 다중모우드 광섬유 결합기의 광분파율은 종래의 FBT(Fused Biconical Taper) 결합기보다 입력 광신호의 결합 조건에 따른 변화가 훨씬 적어서 사용하는 광통신 시스템의 모우드 잡음에 덜 민감하다. 광섬유 축에 수직하게 증착된 다층 유전체 거울들의 반사율 스펙트럼 특성을 측정하였으며, 행렬 해석법을 사용하여 실험 결과를 분석, 고찰하였다.

  • PDF

Current Status of the Synchrotron Small-Angle X-ray Scattering Station BL4C1 at the Pohang Accelerator Laboratory

  • Jorg Bolze;Kim, Jehan;Huang, Jung-Yun;Seungyu Rah;Youn, Hwa-Shik;Lee, Byeongdu;Shin, Tae-Joo;Moonhor Ree
    • Macromolecular Research
    • /
    • 제10권1호
    • /
    • pp.2-12
    • /
    • 2002
  • The small-angle X-ray scattering (SAXS) beamline BL4C1 at the 2.5 GeV storage ring of the Pohang Accelerator Laboratory (PAL) has been in its first you of operation since August 2000. During this first stage it could meet the basic requirements of the rapidly growing domestic SAXS user community, which has been carrying out measurements mainly on various polymer systems. The X-ray source is a bending magnet which produces white radiation with a critical energy of 5.5 keV. A synthetic double multilayer monochromator selects quasi-monochromatic radiation with a bandwidth of ca. 1.5%. This relatively low degree of monochromatization is sufficient for most SAXS measurements and allows a considerably higher flux at the sample as compared to monochromators using single crystals. Higher harmonics from the monochromator are rejected by reflection from a flat mirror, and a slit system is installed for collimation. A charge-coupled device (CCD) system, two one-dimensional photodiode arrays (PDA) and imaging plates (IP) are available its detectors. The overall performance of the beamline optics and of the detector systems has been checked using various standard samples. While the CCD and PDA detectors are well-suited for diffraction measurements, they give unsatisfactory data from weakly scattering samples, due to their high intrinsic noise. By using the IP system smooth scattering curves could be obtained in a wide dynamic range. In the second stage, stating from August 2001, the beamline will be upgraded with additional slits, focusing optics and gas-filled proportional detectors.

Small-Angle X-ray Scattering Station 4C2 BL of Pohang Accelerator Laboratory for Advance in Korean Polymer Science

  • Yoon, Jin-Hwan;Kim, Kwang-Woo;Kim, Je-Han;Heo, Kyu-Young;Jin, Kyeong-Sik;Jin, Sang-Woo;Shin, Tae-Joo;Lee, Byeong-Du;Rho, Ye-Cheol;Ahn, Byung-Cheol;Ree, Moon-Hor
    • Macromolecular Research
    • /
    • 제16권7호
    • /
    • pp.575-585
    • /
    • 2008
  • There are two beamlines (BLs), 4C1 and 4C2, at the Pohang Accelerator Laboratory that are dedicated to small angle X-ray scattering (SAXS). The 4C1 BL was constructed in early 2000 and is open to public users, including both domestic and foreign researchers. In 2003, construction of the second SAXS BL, 4C2, was complete and commissioning and user support were started. The 4C2 BL uses the same bending magnet as its light source as the 4C1 BL. The 4C1 BL uses a synthetic double multilayer monochromator, whereas the 4C2 BL uses a Si(111) double crystal monochromator for both small angle and wide angle X-ray scattering. In the 4C2 BL, the collimating mirror is positioned behind the monochromator in order to enhance the beam flux and energy resolution. A toroidal focusing mirror is positioned in front of the monochromator to increase the beam flux and eliminate higher harmonics. The 4C2 BL also contains a digital cooled charge coupled detector, which has a wide dynamic range and good sensitivity to weak scattering, thereby making it suitable for a range of SAXS and wide angle X-ray scattering experiments. The general performance of the 4C2 BL was initially tested using standard samples and further confirmed by the experience of users during three years of operation. In addition, several grazing incidence X-ray scattering measurements were carried out at the 4C2 BL.