• 제목/요약/키워드: Multilayer LTCC process

검색결과 25건 처리시간 0.03초

Sintering of LTCC Tape on Alumina Substrates for Multilayered Structure

  • Kim, Hyo-Tae;Nam, Myung-Hwa;Chun, Byung-Joon;Kim, Jong-Hee
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.908-909
    • /
    • 2006
  • The HTCC based multilayer structure plasma head unit have some difficulties in fabrication due to complicated post-processes, such as heat treatment at reduced atmosphere, re-bonding of each layer, and silver metallization. On the other hand, LTCC based technology provides relatively simple process for multilayer plasma unit except weak mechanical properties. To overcome this problem a combined scheme using both LTCC and HTCC technology has been developed in our group, recently. In this work, we report the structural design, materials selection, joining of LTCC with HTCC substrate, and co-firing process for the fabrication of multilayered atmospheric plasma head unit.

  • PDF

LTCC기술을 활용한 VCO모듈

  • 이영신;유찬세;이우성;강남기
    • 한국전자파학회지:전자파기술
    • /
    • 제12권3호
    • /
    • pp.12-24
    • /
    • 2001
  • 최근에 이동통신 시스템의 다기능/고기능화에 따 라 여러 선진업체에서 RF부품의 모듈화 개발이 추 진되고 있으며, 이에 대응하여 LTCC를 이용한 MCM (Multi-Chip Module)적층기술의 개발이 확대되고 있 다. 이 기술은 세라믹기판 내부에 L, C, R등의 수 동소자를 3차원적으로 구성, 일체화할 수 있기 때문 에 이들 수동소자 뿐 아니라 세라믹 개별 부품으로 이용되고 있는 대역통과 여파기 및 바이어스라인, 임피던스 매칭 회로, 스트립라인등을 하나의 구조물 에 집적화 시킴으로써 제품의 소형화 및 대량생산 이 가능해진다. 본 논문에서는 LTCC를 활용한 고 집적 복합모듈 기술과 동향에 대한 개요 및 개발사례로서 적층 VCO 모듈의 제작에 대해 소개하기로 한다.

  • PDF

DGS 구조를 이용한 적층 LTCC 대역통과 필터의 설계 및 제작 (Design and fabrication of multilayer LTCC BPF using DGS structure)

  • 조영균;김형석;송희석;박규호
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.333-337
    • /
    • 2003
  • In this paper, 5.2 GHz WLAN BPF(Band Pass Filter) using LTCC(Low temperature co-firing ceramic) Multilayer technology was simulated and manufactured. A DGS(Defected Ground structure) resonator with spiral ground pattern is used to shorten resonator size and improve circuit Q factor. And the equivalent circuit of BPF was suggested. The measured result shows good agreement with simulated data. Experimental results show the center frequency of 5.25GHz, the insertion loss of 0.14dB, and the 3-dB bandwidth of 350MHz (6%). The center frequency of BPF is 5.25GHz which is available for wireless LAN.

  • PDF

이온빔 스퍼터링법에 의한 다층막의 표면특성변화 (The surface propery change of multi-layer thin film on ceramic substrate by ion beam sputtering)

  • 이찬영;이재상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.259-259
    • /
    • 2008
  • The LTCC (Low Temperature Co-fired Ceramic) technology meets the requirements for high quality microelectronic devices and microsystems application due to a very good electrical and mechanical properties, high reliability and stability as well as possibility of making integrated three dimensional microstructures. The wet process, which has been applied to the etching of the metallic thin film on the ceramic substrate, has multi process steps such as lithography and development and uses very toxic chemicals arising the environmental problems. The other side, Plasma technology like ion beam sputtering is clean process including surface cleaning and treatment, sputtering and etching of semiconductor devices, and environmental cleanup. In this study, metallic multilayer pattern was fabricated by the ion beam etching of Ti/Pd/Cu without the lithography. In the experiment, Alumina and LTCC were used as the substrate and Ti/Pd/Cu metallic multilayer was deposited by the DC-magnetron sputtering system. After the formation of Cu/Ni/Au multilayer pattern made by the photolithography and electroplating process, the Ti/Pd/Cu multilayer was dry-etched by using the low energy-high current ion-beam etching process. Because the electroplated Au layer was the masking barrier of the etching of Ti/Pd/Cu multilayer, the additional lithography was not necessary for the etching process. Xenon ion beam which having the high sputtering yield was irradiated and was used with various ion energy and current. The metallic pattern after the etching was optically examined and analyzed. The rate and phenomenon of the etching on each metallic layer were investigated with the diverse process condition such as ion-beam acceleration energy, current density, and etching time.

  • PDF

Combline 구조를 이용한 적층 LTCC 대역통과 필터의 설계 및 제작 (Design and fabrication of multilayer LTCC BPF using Combline structure)

  • 안순영;이영신;방규석;김경철;강남기;송희석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.628-631
    • /
    • 2003
  • In this paper, 2.4 GHz WLAN BPF(Band Pass Filter) using LTCC(Low temperature cofiring ceramic) multilayer technology was simulated and manufactured. A modified ${\lambda}/4$ Hair-pin resonator with shunt-to ground loaded capacitor is used to shorten resonator length and improve circuit Q factor. Proposed BPF has a combline structure. Electro-magnetic Coupling between coupled strip-line resonators is controlled to provide attenuation poles at finite frequencies. The overall size of the filter is $3.2{\times}1.6{\times}1.3mm^3$. The measured result shows good agreement with simulated data.

  • PDF

저온 동시소성 세라믹을 이용한 적층형 VCO의 설계 및 제작 (Design and Manufacture of Multi-layer VCO by LTCC)

  • 박귀남;이헌용;김지균;송진형;이동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.291-294
    • /
    • 2003
  • The circuit substrate was made from the Low Temperature Cofired Ceramics(LTCC) that a $\varepsilon_\gamma$ was 7.8. Accumulated Varactor and the low noise transistor which were a Surface Mount Device-type element on LTCC substrate. Let passive element composed R, L, C with strip-line of three dimension in the multilayer substrate circuit inside, and one structure accumulate band-pass filter, resonator, a bias line, a matching circuit, and made it. Used Screen-Print process, and made Strip-line resonator. A design produced and multilayer-type VCO(Voltage Controlled Oscillator), and recognized a characteristic with the Spectrum Analyzer which was measurement equipment. Measured multilayer structure VCO is oscillation frequency 1292[MHz], oscillation output -28.38[dBm], hamonics characteristic -45[dBc] in control voltage 1.5[V], A phase noise is -68.22[dBc/Hz] in 100 KHz offset frequency. The oscillation frequency variable characteristic showed 30[MHz/V] characteristic, and consumption electric current is approximately 10[mA].

  • PDF

LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향 (Influence of Laminating and Sintering Condition on Permittivity and Shrinkage During LTCC Process)

  • 정명식;황상현;정형욱;임성한;오수익
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.396-400
    • /
    • 2007
  • LTCC(Low Temperature Co-fired Ceramic) which offers a good performance to produce multilayer structures with electronic circuits and components has emerged as an attractive technology in the electronic packaging industry. In LTCC module fabrication process, the lamination and the sintering are very important processes and affect the electrical characteristics of the final products because the processes change the permittivity of ceramics and the dimension of the circuit patterns which have influences on electronic properties. This paper discusses the influence of lamination pressure and sintering temperature on the permittivity and the dimensional change of LTCC products. In the present investigation, it is shown that the permittivity increases along with increasing of the lamination pressure and the sintering temperature.

LTCC 기판의 Particle Size 에 따른 Ag-Pd 전극의 Soldering 특성 변화 (Soldering characteristics of Ag-Pd electrodes in relationship to differing particle size of LTCC substrate)

  • 조현민;유명재;박종철
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.130-133
    • /
    • 2002
  • Solder leaching resistance of the metal electrode is an important factor with regard to adhesion properties of ceramic substrate. In the Low Temperature Co-fired Ceramics (LTCC), Ag-Pd or Ag-Pt pastes are used instead of pure Ag paste to prevent leaching. Solder leaching behavior of the Ag-Pd paste in relation to LTCC raw material powder size was investigated. First fabrication of LTCC green tape with different particle size was done. LTCC substrates with Ag-Pd electrode were prepared using conventional multilayer ceramic process. Dipping test was performed to test solder leaching behavior of the electrode. Ag-Pd electrode on LTCC substrate with smaller particle size achieved higher solder leaching resistance.

  • PDF

Binder Film을 이용한 LTCC Sheet 적층 (Lamination of LTCC Sheet Using Binder Film)

  • 신효순;최용석;박은태
    • 한국세라믹학회지
    • /
    • 제43권4호
    • /
    • pp.253-258
    • /
    • 2006
  • In the lamination process of multi-layer ceramic modules, the occurrence of delamination comes into repeatedly. To completely improve the lamination process of LTCC sheets, a binder film was introduced between the layers. The binder film did not originate the delamination until the thickness under $40{\mu}m$. After lamination, the thickness of the binder film was determined by the infilteraion of binder by the pressure, and after the bake-out, was dependent on the decomposition of binder resin. Any detectable defect was not observed in the multilayer structure with Ag inner electrodes.

저온 동시소성 공정으로 제작된 3차원 매립 인덕터 모델링 (Modeling of 3-D Embedded Inductors Fabricated in LTCC Process)

  • 이서구;최종성;윤일구
    • 한국전기전자재료학회논문지
    • /
    • 제15권4호
    • /
    • pp.344-348
    • /
    • 2002
  • As microelectronics technology continues to progress, there is also a continuous demand on highly integration and miniaturization of systems. For example, it is desirable to package several integrated circuits together in multilayer structure, such as multichip modules, to achieve higher levels of compactness and higher performance. Passive components (i.e., capacitors, resistors, and inductors) are very important fort many MCM applications. In addition, the low-temperature co-fired ceramic (LTCC) process has considerable potential for embedding passive components in a small area at a low cost. In this paper, we investigate a method of statistically modeling integrated passive devices from just a small number of test structures. A set of LTCC inductors is fabricated and their scattering parameters (s-parameters) are measured for a range of frequencies from 50MHz to 5GHz. An accurate model for each test structure is obtained by using a building block based modeling methodology and circuit parameter optimization using the HSPICE circuit simulator.