• Title/Summary/Keyword: Multidrug-Resistant

Search Result 406, Processing Time 0.028 seconds

Nucleotide Sequences of Rep and CAT Proteins encoded by Chloramphenicol-Resistance Plasmid pKH7 (클로람페니콜 내성 플라스미드 pKH7의 Rep 단백질과 CAT 단백질의 염기서열 분석)

  • 윤성준;이대운;김우구;신철교;임성환;문경호
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.676-680
    • /
    • 1995
  • The nucleotide sequence of Xbal-Mbol fragment of pKH7, a chloramphenicol-resistant($Cm^{r}$) plasmid isolated from multidrug-resistant S. aureus SA2, has been determined. Xbal-Mbol fragment of pKH7 was found to contain two ORFs. One ORF encoded Rap and the other encoded CAT protein. The deduced amino acid sequences of Rep and CAT of pKH7 were compared to those of pUB112 and pC221. Comparisons revealed that there was one amino acid difference in CAT between pKH7 and pUB112. CAT of pKH7 exhibited 98.6% amino acid identity to that of pC221. In case of Rep proteins, a slightly lower homology of 96.4% and 86.7% in amino acid sequences was observed between pKH7 and pUB112 and between pKH7 and pC221, respectively.

  • PDF

Trends in the use of antibiotics among Korean children

  • Choe, Young June;Shin, Ju-Young
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.4
    • /
    • pp.113-118
    • /
    • 2019
  • Inappropriate antibiotic use is the most important factor causing increased bacterial resistance to antibiotics, thus affecting patient outcomes. Multidrug-resistant bacteria have become a serious public health threat, causing significant morbidity and mortality worldwide. In Korea, the burden of antibiotic-resistant bacteria has become an important public health issue. There is increasing evidence of overuse and misuse of antibiotics in Korea, as observed in cohorts with large sample sizes. Antibiotic use among children should receive particular attention because of the frequency of community-associated infections among this population and the elevated risk of transmission. Recent studies from Korea have demonstrated that the use of broad-spectrum antibiotics, either for inpatient or outpatient treatment, has increased among many age groups, especially children. In this review, we aim to describe the patterns of antibiotic prescription and evaluate recent trends in antibiotic use among children. Coordinated efforts toward communication and education in order to address misunderstandings regarding antibiotic use, involving interprofessional antimicrobial stewardship programs, are required in the near future.

Drug resistance of Mycobacterium tuberculosis in children (소아 결핵 환자에서의 항결핵제 내성 II)

  • Lee, Soo Jin;Ahn, Young Min;Kim, Hee Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • Purpose : The rate of drug-resistant tuberculosis (DR-TB) in children is an indicator of the effectiveness of TB control programs in the community. This study aimed to assess the prevalence of DR-TB in children and evaluate TB management. Methods : Between January 1999 and July 2007, drug susceptibility tests for anti-TB drugs were employed for patients aged less than 19 years with culture-positive TB. Results : A total of 607 cases (16.6%) were resistant to at least one anti-TB drug as follows: isoniazid (INH; 13.8%), rifampin (8.9%), pyrazinamide (4.2%), streptomycin (3.7%), ethambutol (EMB; 5.9%), and para-aminosalicylic acid (PAS; 1.9%). Multidrug-resistant (MDR) TB was found in 276 cases (7.6%); extensive drug resistant (XDR) TB, in 5 cases (0.2%). The rate of resistance to at least one anti-TB drug in children aged >15 years (16.1%) was significantly lower than that in children aged <15 years (20.5%) (P=0.016). The rate of resistance to at least one anti-TB drug and multidrug-resistance in this survey decreased significantly (P<0.001) as compared to the previous survey (1987-1995). The rate of resistance to INH, EMB, and PAS also significantly decreased (P<0.05). Conclusion : The rate of DR-TB in children in Korea has decreased over time; however, it remains higher than that in other countries. MDR-TB and XDR-TB are the emerging problems in Korean children. Therefore, the selection of effective drugs through drug susceptibility tests and evaluating risk factors of resistant TB is essential to successful therapy and a decreased incidence of DR-TB.

Analysis of rpoB Gene in Rifampin-Resistant M. Tuberculosis by Direct Sequencing and Line Probe Assay (염기서열결정과 Line Probe 분석법에 의한 Rifampin내성 결핵균의 rpoB 유전자 분석)

  • Lee, Min-Ki;Kim, Yun-Seong;Lee, Hyo-Jin;Cheon, Du-Su;Yun, Sang-Myung;Park, Sam-Seok;Kim, Cheol-Min;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.251-263
    • /
    • 1997
  • Background : The emergence of multidrug-resistant strains of Mycobacterium tuberculosis presents a significant challange to the treatment and control of tuberculosis, and there is an urgent need to understand the mechanisms by which strains acquire multidrug resistance. Recent advances in molecular methods for the detection of M. tuberculosis genetic targets have approached the sensitivity of culture. Furthermore the prospect of determining resistance in mycobacteria at the nucleic acid level particulary to first-line drugs like rifampin, isoniazid has provided a glimps of the next generation of sensitivity test for M. tuberculosis. Previous studies in RMP resistant M. tuberculosis have shown that mutation in $\beta$subunit of RNA polymerase is main mechanism of resistance. Method : In this study, rpoB gene for the $\beta$subunit of RNA polymerase from M. tuberculosis of 42 cultured samples (32 were RMP resistant and 10 were sensitive cases) were isolated and characterised the mutations. Direct sequencing data were compared with the results of INNO-LiPA Line Probe Assay (LiPA, Innogenetics, Belgium), commercial RMP resistance detecting kit using reverse hybridization method. Results : All of the RMP resistant samples were revealed the presence of mutation by LiPA. In 22 samples (68.8%) out of 32 RMP resistant cases, the mutation types were confirmed by the positive signal at one of 4 mutation bands in the strip. The most frequent type was R5 (S531L) which were 17 cases (77.3%). Results of direct sequencing were identified the exact characteristics of 8 mutations which were not confirmed by LiPA. S522W type point mutation and 9 base pair deletion at codon 513~515 were new identified mutations for the first time. Conclusion : Mutations in rpoB gene is the main mechanism of RMP resistance in M. tuberculosis and LiPA is a very useful diagnostic tool for the early diagnosis of RMP resistance in M. tuberculosis.

  • PDF

Treatment of Isoniazid-Resistant Pulmonary Tuberculosis

  • Jhun, Byung Woo;Koh, Won-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.1
    • /
    • pp.20-30
    • /
    • 2020
  • Tuberculosis (TB) remains a threat to public health and is the leading cause of death globally. Isoniazid (INH) is an important first-line agent for the treatment of TB considering its early bactericidal activity. Resistance to INH is now the most common type of resistance. Resistance to INH reduces the probability of treatment success and increases the risk of acquiring resistance to other first-line drugs such as rifampicin (RIF), thereby increasing the risk of multidrug-resistant-TB. Studies in the 1970s and 1980s showed high success rates for INH-resistant TB cases receiving regimens comprised of first-line drugs. However, recent data have indicated that INH-resistant TB patients treated with only firs-tline drugs have poor outcomes. Fortunately, based on recent systematic meta-analyses, the World Health Organization published consolidated guidelines on drug-resistant TB in 2019. Their key recommendations are treatment with RIF-ethambutol (EMB)-pyrazinamide (PZA)-levofloxacin (LFX) for 6 months and no addition of injectable agents to the treatment regimen. The guidelines also emphasize the importance of excluding resistance to RIF before starting RIF-EMB-PZA-LFX regimen. Additionally, when the diagnosis of INH-resistant TB is confirmed long after starting the first-line TB treatment, the clinician must decide whether to start a 6-month course of RIF-EMB-PZA-LFX based on the patient's condition. However, these recommendations are based on observational studies, not randomized controlled trials, and are thus conditional and based on low certainty of the effect estimates. Therefore, further work is needed to optimize the treatment of INH-resistant TB.

Anti-proliferative Effect of the Rhizome Extract of Alpinia officinarum on Cultured Human Tumor Cell Lines (고량강 추출물의 암세포증식 저해 효과)

  • Lee, Ho-Sung;Cha, Mi-Ran;Choi, Chun-Whan;Choi, Sang-Un;Kim, Young-Sup;Kim, Young-Kyoon;Kim, Young-Ho;Yon, Gyu-Hwan;Ryu, Shi-Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.4
    • /
    • pp.347-351
    • /
    • 2008
  • The methanol (MeOH) extract of the rhizome of Alpinia officinarum Hance (Zingiberaceae) demonstrated a potent inhibition on the proliferation of cultured human tumor cell lines such as MES-SA (human uterine carcinoma cell line), MESSA/DX5 (multidrug resistant subline of MES-SA), HCT-15 (human colorectal adenocarcinoma cell line), HCT15/CL02 (multidrug resistant subline of HCT15). The MeOH extract was fractionated into four portions by serial solvent partition, ie., methylene chloride (CH2Cl2) soluble part, ethylacetate (EtOAc) soluble part, n-butanol (BuOH) soluble part and remaining water layer. Among them, the $CH_2Cl_2$ soluble part of the extract exhibited a most potent inhibition on the proliferation of tested tumor cell lines. Bioassay-guided fractionation of the $CH_2Cl_2$ soluble part led to the isolation of five diarylheptanoid and two flavonoid constituents, i. e., galangin (1), 7-(4"-hydroxy-3"-methoxyphenyl)-1-phenylhept-4-en-3-one (2), 1,7-diphenyl-5-hydroxy-3-heptanone (3), trans,trans-1-(3'-methoxy-4'-hydroxyphenyl)-7-phenyl-5-ol-4,6-dien-3-heptanone (4), 5-methoxy-7-(4"-hydroxy-3"-methoxyphenyl)-1-phenyl-3-heptanone (5), kaempferide (6), 5-hydroxy-7-(4"-hydroxy-3"-methoxyphenyl)-1-phenyl-3-heptanone (7). Structures of the isolated active components (1 - 7) were established by chemical and spectroscopic means.

Isolation, Molecular Characterization and Antibiotic Susceptibility Pattern of Vibrio parahaemolyticus from Aquatic Products in the Southern Fujian Coast, China

  • Hu, Yuanqing;Li, Fengxia;Zheng, Yixian;Jiao, Xinan;Guo, Liqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.856-867
    • /
    • 2020
  • Vibrio parahaemolyticus is a major gastroenteritis-causing pathogen in many Asian countries. Antimicrobial resistance in V. parahaemolyticus has been recognized as a critical threat to food safety. In this study, we determined the prevalence and incidence of antimicrobial resistance in V. parahaemolyticus in the southern Fujian coast, China. A total of 62 isolates were confirmed in retail aquatic products from June to October of 2018. The serotype O3:K6 strains, the virulence genes tdh and trh, antibiotic susceptibility and molecular typing were investigated. Then plasmid profiling analysis and curing experiment were performed for multidrug-resistant strains. The results showed that the total occurrence of V. parahaemolyticus was 31% out of 200 samples. Five strains (8.1%) out of 62 isolates were identified as the V. parahaemolyticus O3:K6 pandemic clone. A large majority of isolates exhibited higher resistance to penicillin (77.4%), oxacillin (71%), ampicillin (66.1%) and vancomycin (59.7%). Seventy-one percent (44/62) of the isolates exhibited multiple antimicrobial resistance. All 62 isolates were grouped into 7 clusters by randomly amplified polymorphic DNA, and most of the isolates (80.6%) were distributed within cluster A. Plasmids were detected in approximately 75% of the isolates, and seven different profiles were observed. Seventy-six percent (25/33) of the isolates carrying the plasmids were eliminated by 0.006% SDS incubated at 42℃, a sublethal condition. The occurrence of multidrug-resistant strains could be an indication of the excessive use of antibiotics in aquaculture farming. The rational use of antimicrobial agents and the surveillance of antibiotic administration may reduce the acquisition of resistance by microorganisms in aquatic ecosystems.

Isolation and Properties of Cytotoxic Polyene Antibiotics Produced by Myxococcus stipitatus JW117. (Myxococcus stipitatus JW117이 생산하는 Polyene계 세포독성 물질의 분리 및 특성)

  • 안종웅;최상운;권호정
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.157-161
    • /
    • 2002
  • Drug resistance is one of the most significant impediments to successful chemotherapy of cancer. Multidrug-resistance (MDR) is characterized by decreased cellular sensitivity to anticancer agents due to the overexpression of P-glycoprotein. By employing adriamycin-resistance CL02 cancer cells, we undertook the screening for agents which were effective to multidrug-resistant cancer cells. As a result, a myxobacterial strain JW117 was selected for study since the solvent extract of cell mass of the strain was found to exhibit significant activity against the CL02 cancer cells. Cytotoxicity-guided chromatographic fractionation led to the isolation of phenalamides $A_2$ and $A_3$. The producing organism was identified as Myxococcus stipitatus by taxonomic comparison with type strains of Myxococcus sp. as well as its morphological and physiological characteristics. Phenalamides$ A_1$,$ A_2$ and $A_3$ were as active against drug-resistant cancer cells CL02 and CP70 as against the corresponding sensitive cells with $IC_{50}$ values ranging from 0.23~0.57 $\mu\textrm{g}$/ml.

Effects of C-Terminal Residues of 12-Mer Peptides on Antibacterial Efficacy and Mechanism

  • Son, Kkabi;Kim, Jieun;Jang, Mihee;Chauhan, Anil Kumar;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1707-1716
    • /
    • 2019
  • The development of new antimicrobial agents is essential for the effective treatment of diseases such as sepsis. We previously developed a new short peptide, Pap12-6, using the 12 N-terminal residues of papiliocin, which showed potent and effective antimicrobial activity against multidrug-resistant Gram-negative bacteria. Here, we investigated the antimicrobial mechanism of Pap12-6 and a newly designed peptide, Pap12-7, in which the 12th Trp residue of Pap12-6 was replaced with Val to develop a potent peptide with high bacterial selectivity and a different antibacterial mechanism. Both peptides showed high antimicrobial activity against Gram-negative bacteria, including multidrug-resistant Gram-negative bacteria. In addition, the two peptides showed similar anti-inflammatory activity against lipopolysaccharide-stimulated RAW 264.7 cells, but Pap12-7 showed very low toxicities against sheep red blood cells and mammalian cells compared to that showed by Pap12-6. A calcein dye leakage assay, membrane depolarization, and confocal microscopy observations revealed that the two peptides with one single amino acid change have different mechanisms of antibacterial action: Pap12-6 directly targets the bacterial cell membrane, whereas Pap12-7 appears to penetrate the bacterial cell membrane and exert its activities in the cell. The therapeutic efficacy of Pap12-7 was further examined in a mouse model of sepsis, which increased the survival rate of septic mice. For the first time, we showed that both peptides showed anti-septic activity by reducing the infiltration of neutrophils and the production of inflammatory factors. Overall, these results indicate Pap12-7 as a novel non-toxic peptide with potent antibacterial and anti-septic activities via penetrating the cell membrane.

Hospital Nurses' Knowledge and Compliance on Multidrug-resistant Organism Infection Control Guideline (일 대학병원 간호사의 다약제 내성균 감염관리지침에 대한 지식과 수행정도)

  • Kang, Ji-Yeon;Cho, Jin-Wan;Kim, Yu-Jung;Kim, Dong-Hee;Lee, Ji-Young;Park, Hey-Kyung;Jung, Sung-Hee;Lee, Eun-Nam
    • Journal of Korean Academy of Nursing
    • /
    • v.39 no.2
    • /
    • pp.186-197
    • /
    • 2009
  • Purpose: This study was done to investigate nurses' knowledge of, and compliance with the multidrug-resistant organism (MDRO) infection control guidelines. Methods: A survey questionnaire was developed based on the institutional and national guidelines and was administered to a convenience sample of 306 nurses in a university hospital. Results: The mean score for knowledge was 33.87 (percentage of correct answers: 82.61%). The percentages of correct answers for basic concepts, route of transmission, hand washing/protective devices and environment management were 74.27%, 94.29%, 92.90% and 75.54% respectively. The mean compliance score was 4.15 (range: 1-5). The compliance scores for education, communication, contact precaution, disinfection, surveillance culture, and hand washing were 3.29, 4.05, 4.20, 4.50, 4.40 and 4.48 respectively. Nurses indicated "lack of time (30.06%)", "lack of means (10.78%)" and "lack of knowledge (9.48%)" as reasons for noncompliance. Conclusion: While most educational programs have focused on hand washing or use of protective devices to prevent transmission of MDRO in acute care settings, hospital nurses' knowledge of the basic concepts of MDRO and environmental management has remained insufficient. Nurses are relatively non-compliant to the guidelines in the areas of education (staff, patient, family) and communication. Comprehensive educational programs are needed to decrease hospital infection rates and to improve the health of patients.