• Title/Summary/Keyword: Multidrug Resistance

Search Result 394, Processing Time 0.026 seconds

A Novel ABC Transporter Gene ABC2 Involved in Multidrug Susceptibility but not Pathogenicity in Rice Blast Fungus, Magnaporthe grisea

  • Lee, Young-Jin;Kyosuke Yamamoto;Hiroshi Hamamoto;Ryoji Nakaune;Tadaaki Hibi
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.21-22
    • /
    • 2003
  • Fungicide treatment is the most important method for the control of plant diseases caused by phytopathogenic fungi. But fungicide resistant strains have appeared in many phytopathogenic fungi. Until now, molecular mechanisms of fungicide resistance such as mutation of target protein, overproduction of target enzyme and detoxification of fungicide have been designated. Recently, it was demonstrated that active efflux of fungicides mediated by ATP-binding cassette (ABC) transporters also contributes to fungicide resistance in several filamentous fungi, such as Aspergillus nidulans, Penicillium digitatum and Botrytis cinerea.(중략)

  • PDF

The Function and Application of Antibiotic Peptides (항생펩타이드의 기능과 적용분야)

  • Lee, Jong-Kook;Gopal, Ramamourthy;Park, Yoonkyung
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.119-124
    • /
    • 2011
  • Currently, people are exposed to many harmful diseases. Therefore, there are many schemes, such as automation of productive facilities, development of information and communication technology, enhanced the quality of human life and wealth. However, these processes lead to weakened immune system. Thus, people are more vulnerable to infections from pathogens and environmental stress. Misuse and abuse of drugs resulted in the rapid emergence of multidrug-resistant microbes and tumors, therefore, to find new antibiotics are urgently needed. One of them is a peptide-antibiotic, that is not or less occurred a drug-resistance, comparing to conventional drugs. Peptides with various antibiotic activities have been identified from life organisms. The present review provides an overview of activities and application of peptide antibiotics.

Inhibition of Quorum Sensing Regulated Virulence Factors and Biofilm Formation by Eucalyptus globulus against Multidrug-Resistant Pseudomonas aeruginosa

  • Sagar, Pankaj Kumar;Sharma, Poonam;Singh, Rambir
    • Journal of Pharmacopuncture
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • Objectives: The quorum-sensing-inhibitory and anti-biofilm activities of the methanol extract of E. globulus leaves were determined against clinically isolated multidrug-resistant Pseudomonas aeruginosa. Methods: The preliminary anti-quorum-sensing (AQS) activity of eucalyptus was investigated against a biosensor strain Chromobacterium violaceum ATCC 12472 (CV12472) by using the agar well diffusion method. The effect of sub-minimum inhibitory concentrations (sub-MICs) of the methanol extract of eucalyptus on different quorum-sensing-regulated virulence factors, such as swarming motility, pyocyanin pigment, exopolysaccharide (EPS), and biofilm formation, against clinical isolates (CIs 2, 3, and 4) and reference PA01 of Pseudomonas aeruginosa were determined using the swarm diameter (mm)-measurement method, chloroform extraction method, phenol (5%)-sulphuric acid (concentrated) method, and the microtiter plate assay respectively, and the inhibition (%) in formation were calculated. Results: The preliminary AQS activity (violacein pigment inhibition) of eucalyptus was confirmed against Chromobacterium violaceum ATCC 12472 (CV12472). The eucalyptus extract also showed concentration-dependent inhibition (%) of swarming motility, pyocyanin pigment, EPS, and biofilm formation in different CIs and PA01 of P. aeruginosa. Conclusion: Our results revealed the effectiveness of the E. globulus extract for the regulation of quorum-sensing-dependent virulence factors and biofilm formation at a reduced dose (sub-MICs) and suggest that E. globulus may be a therapeutic agent for curing and controlling bacterial infection and thereby reducing the possibility of resistance development in pathogenic strains.

Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi

  • Sayed, Manal T. El;El-Sayed, Ashraf S.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.226-236
    • /
    • 2020
  • Antibiotic resistance by pathogenic bacteria and fungi is one of the most serious global public health problems in the 21st century, directly affecting human health and lifestyle. Pseudomonas aeruginosa and Staphylococcus aureus with strong resistance to the common antibiotics have been isolated from Intensive Care Unit patients at Zagazig Hospital. Thus, in this study we assessed the biocidal activity of nanoparticles of silver, copper and zinc synthesized by Fusarium solani KJ 623702 against these multidrug resistant-bacteria. The synthesized Metal Nano-particles (MNPs) were characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Zeta potential. The Fourier transform infrared spectroscopy (FTIR) result showed the presence of different functional groups such as carboxyl, amino and thiol, ester and peptide bonds in addition to glycosidic bonds that might stabilize the dispersity of MNPs from aggregation. The antimicrobial potential of MNPs by F. solani against the multidrug-resistant (MDR) P. aeruginosa and S. aureus in addition to the mycotoxigenic Aspergillus awamori, A. fumigatus and F. oxysporum was investigated, based on the visual growth by diameter of inhibition zone. Among the synthesized MNPs, the spherical AgNPs (13.70 nm) displayed significant effect against P. aeruginosa (Zone of Inhibition 22.4 mm and Minimum Inhibitory Concentration 21.33 ㎍/ml), while ZINC oxide Nano-Particles were the most effective against F. oxysporum (ZOI, 18.5 mm and MIC 24.7 ㎍/ml). Transmission Electron Microscope micrographs of AgNP-treated P. aeruginosa showed cracks and pits in the cell wall, with internalization of NPs. Production of pyocyanin pigment was significantly inhibited by AgNPs in a concentration-dependent manner, and at 5-20 ㎍ of AgNPs/ml, the pigment production was reduced by about 15-100%, respectively.

First Report on Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Isolates in Children Admitted to Tertiary Hospitals in Vietnam

  • Son, Nguyen Thai;Huong, Vu Thi Thu;Lien, Vu Thi Kim;Nga, Do Thi Quynh;Au, Tran Thi Hai;Nga, Tang Thi;Hoa, Le Nguyen Minh;Binh, Tran Quang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1460-1469
    • /
    • 2019
  • The extensive distribution of multidrug-resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) poses a threat to healthcare worldwide. This study aimed to investigate the MDR and molecular patterns of MRSA isolates in children admitted to the two biggest tertiary care pediatric hospitals in northern and southern Vietnam. A total of 168 MRSA strains were collected to determine antibiotic susceptibility by minimum inhibitory concentration tests. Antibiotic-resistant genes, pulsed-field gel electrophoresis, staphylococcal cassette chromosome mec (SCCmec) typing, and multilocus sequence typing were used for the molecular characterization of MRSA. Among the total strains, the MDR rate (51.8%) was significantly higher in the northern hospital than in the southern hospital (73% vs. 39%, p < 0.0001). The MDR-MRSA with the highest rates were "ciprofloxacin-erythromycin-gentamicintetracyclines" (35.6%), followed by "erythromycin-tetracycline-chloramphenicol" (24.1%), and "ciprofloxacin-erythromycin-gentamicin" (19.5%), showing an accumulative total of 79.3%. The most susceptible antibiotics were rifampicin (100%) and vancomycin (100%), followed by doxycycline (94.0%), meropenem (78.0%), and cefotaxime (75.0%). The SCCmecII strains showed greater resistance to gentamicin, ciprofloxacin, tetracycline, meropenem and cephalosporins compared with the other strains. The SCCmecII strains exhibited the highest rate in the tested genes (aacA/aphD: 55.2%, ermA/B/C: 89.7%, and tetK/M: 82.8%). ST5-SCCmecII was the predominant clone in the northern hospital, whereas SCCmecIVa was more pronounced in the southern hospital. In conclusion, our results raised concerns about the predominant MDR-MRSA strains in the pediatric hospitals in Vietnam. The north-south difference in the antibiotic resistance patterns and genetic structure of MRSA suggests different MRSA origins and various uses of antimicrobial agents between the two regions.

Timing and predictors of death during treatment in patients with multidrug/rifampin-resistant tuberculosis in South Korea

  • Eunjeong Son;Hongjo Choi;Jeongha Mok;Young Ae Kang;Dawoon Jeong;Doosoo Jeon
    • The Korean journal of internal medicine
    • /
    • v.39 no.4
    • /
    • pp.640-649
    • /
    • 2024
  • Background/Aims: This study aimed to investigate the timing and predictors of death during treatment among patients with multidrug/rifampin-resistant tuberculosis (MDR/RR-TB) in South Korea. Methods: This was a retrospective cohort study that included MDR/RR-TB cases notified between 2011 and 2017 in South Korea. Results: Among 7,226 MDR/RR-TB cases, 699 (9.7%) died at a median of 167 days (IQR 51-358 d) from the initiation of MDR-TB treatment. The cumulative proportion of all-cause death was 35.5% at 90 days and 52.8% at 180 days from treatment initiation. TB-related deaths occurred at a median of 133 days (IQR 32-366 d), which was significantly earlier than the median of 184 days (IQR 68-356 d) for non-TB-related deaths (p = 0.002). In a multivariate analysis, older age was the factor most strongly associated with death, with those aged ≥ 75 years being 68 times more likely to die (aHR 68.11, 95% CI 21.75-213.26), compared those aged ≤ 24 years. In addition, male sex, comorbidities (cancer, human immunodeficiency virus, and end stage renal disease), the lowest household income class, and TB-specific factors (previous history of TB treatment, smear positivity, and fluoroquinolone resistance) were identified as independent predictors of all-cause death. Conclusions: This nationwide study highlights increased deaths during the intensive phase and identifies high-risk groups including older people and those with comorbidities or socioeconomic vulnerabilities. An integrated and comprehensive strategy is required to reduce mortality in patients with MDR/RR-TB, particularly focusing on the early stages of treatment and target populations.

Risk Factors for Primary Multidrug Resistant Tuberculosis (초회다제내성 결핵의 위험요인)

  • Min, Jinhong;Park, Keeho;Whang, Suhee;Kim, Jinhee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.600-605
    • /
    • 2005
  • Background : Primary multidrug-resistant tuberculosis is defined as Mycobacterium tuberculosis isolates that are resistant to at least isoniazid and rifampin in never-been-treated tuberculosis patients, and this malady is caused by the transmission of a resistant strain from one patient, who is infected with a resistant Mycobacterium tuberculosis strain, to another patient. The prevalence of primary multidrug-resistant tuberculosis could be a good indicator of the performance of tuberculosis control programs in recent years. We conducted a case-control study to identify the risk factors for primary multidrug-resistant tuberculosis. Methods : From January 1, 2001 to, June 30, 2003, by conducting prospective laboratory-based surveillance, we identified 29 hospitalized patients with P-MDRTB and these patients constituted a case group in this study. The controls were represented by all the patients with culture-confirmed drug susceptible tuberculosis who were admitted to National Masan Hospital during the same study period. The odds ratios for the patients with primary multidrug-resistant tuberculosis, as compared with those of the patients with drug susceptible tuberculosis, were calculated for each categorical variable with 95% confidence intervals. Results : Multivariate logistic regression showed that the presence of diabetes mellitus (odds ratio 2.68; 95% confidence interval, 1.05-6.86) was independently associated with having primary multidrug-resistant tuberculosis. Conclusion : This study has shown that diabetes mellitus might be one of the risk factors for primary multidrug-resistant tuberculosis.

Cytotoxicity and Multidrug -Resistance Reversing Activity of Extracts from Gamma-Irradiated Coix Zachryma-jobi L. var. ma-yuen Stapf Seed (감마선 조사된 율무종자의 세포독성 및 다제내성 극복활성)

  • Cha, Young-Ju;Lee, Sook-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.613-618
    • /
    • 2005
  • This study was carried out to examine the effects of gamma irradiation on the cytotoxicity and multidrug-resistance reversing activity of methanol extracts from Coix lachryma-jobi L. var. me-yuen Stapf seed. The seed was irradiated with doses of 1, 4, 8, 16, 32 and 64 Gy of the gamma radiation, and then extracted by methanol. The extracts were examined for cytotoxicity on the human cancer cell lines, MCF-7 (human breast adenocarcinoma pleural effusion), Calu-6 (human pulmonary carcinoma) and SNU-601 (human gastric carcinoma) cells, and investigated for multidrug-resistance reversing activity using drug sensitive AML-2/WT and multidrug-resistant AML-2/D100 cells. The growth inhibitory activity of irradiated seed extracts on human cancer cell lines was higher than that of the control. In the case of Calu-6 cell line, the effect of cytotoxicity was observed in the extracts of 4, 8 and 16 Gy. $IC_{50}$ value in the MCF-7 cell line was measured in the only 8 Gy extract. And in the SNU-601 cell line as Calu-6, the effect of cytotoxicity was observed in the extracts of 4, 8 and 16 Gy. But the extracts of gamma-irradiated seed over 32 Gy showed little growth inhibitory effect against human cancer cell lines. In this result, 8 Gy extract had significant growth inhibitory in all human cancer cell lines $(Calu-6:\;633\;{\mu}g/mL,\;MCF-7:\;653\;{\mu}g/mL\;and\;SNU-601:\;683\;{\mu}g/mL)$. The extracts of 4, 8 and 16 Gy strongly potentiated vincristine cytotoxicity in AML-2/D100 cells. The reversal fold (RF) of 4, 8 and 16 Gy extracts was 1.7, 1.8 and 1.6, respectively. But their cytotoxicities to both sensitive AML-2/WT and resistant AML-2/D100 cells were in the same order of magnitude. These results indicate that the above samples would contain some principles which have cytotoxicity and multidrug-resistance reversing activity. Irradiation technology can be applied to promote physiological activities of medicinal plant seeds.

Prevalence and Characterization of Plasmid-Mediated Quinolone Resistance Determinants qnr and aac(6')-Ib-cr in Ciprofloxacin-Resistant Escherichia coli Isolates from Commercial Layer in Korea

  • Seo, Kwang Won;Lee, Young Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1180-1183
    • /
    • 2020
  • The prevalence and characterization of plasmid-mediated quinolone resistance (PMQR) determinants in ciprofloxacin-resistant Escherichia coli isolated from a Korean commercial layer farm were studied. A total of 45 ciprofloxacin-resistant E. coli isolates were recovered and all isolates were multidrug-resistant. Eight isolates have the PMQR genes aac(6')-Ib-cr, qnrS1, and qnrB4, and seven isolates exhibited double amino acid exchange at both gyrA and parC, and have high fluoroquinolone minimum inhibitory concentrations. Five transconjugants demonstrated transferability of PMQR and β-lactamase genes and similar antimicrobial resistance. Because PMQR genes in isolates from commercial layer chickens could enter the food supply and directly affect humans, control of ciprofloxacin resistance is needed.