• 제목/요약/키워드: Multidisciplinary design constraints

검색결과 17건 처리시간 0.021초

ALUMINUM SPACE FRAME B.I.W. OPTIMIZATION CONSIDERING MULTIDISCIPLINARY DESIGN CONSTRAINTS

  • KIM B. J.;KIM M. S.;HEO S. J.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.635-641
    • /
    • 2005
  • This paper presents an ASF (Aluminum Space Frame) BIW (Body in White) optimal design, which minimizes weight and satisfies multidisciplinary constraints such as static stiffness, vibration characteristics, low-/high-speed crash, and occupant safety. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method were used for efficient RSM modeling. Likewise, the ALM method was used to solve the approximate optimization problem. The approximate optimum was sequentially added to remodel the RSM. The proposed optimization method uses only 20 analyses to solve the 11-design variable problem. Moreover, the optimal design can achieve $15.6\%$ weight reduction while satisfying all the multidisciplinary design constraints.

다분야 설계 제약 조건을 고려한 알루미늄 스페이스 프레임 차체의 최적 설계 (Aluminum Space Frame B.I.W. Optimization Considering Multidisciplinary Design Constraints)

  • 김범진;김민수;허승진
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents an ASF (Aluminum Space Frame) BIW optimal design, which minimizes the weight and satisfies multi-disciplinary constraints such as the static stiffness, vibration characteristics, low-speed crash, high-speed crash and occupant protection. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method is used for efficient RSM modeling. Then, ALM method is used to solve the approximate optimization problem. The approximate optimum is sequentially added to remodel the RSM. The proposed optimization method used only 20 analyses to solve the 11-design variable design problem. Also, the optimal design can reduce the] $15\%$ of total weight while satisfying all of the multi-disciplinary design constraints.

MDO기법에 의한 새로운 구조해석 및 설계기법 고찰: 플랩 구동장치의 구조설계에의 적용 (A Study on the New Method for Structural Analysis and Design by MDO(Multidisciplinary Design Optimization) Methodology : Application to Structural Design of Flap Drive System)

  • 권영주;방혜철
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.184-195
    • /
    • 2000
  • MDO (Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a large number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided systems such as Geometric Solid Modeller, Mesh Generator, CAD system and CAE system. And this paper introduces MDO methodology as a new method for structural analysis and design through the application to the structural design of flap drive system. In a MDO methodology application to the structural design of flap drive system, kinetodynamic analysis is done using a simple aerodynamic analysis model for the air flow over the flap surface instead of difficult aerodynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. And the structural buckling analysis for push pull rod is also done to confirm the optimum structural condition (optimum cross section shape of push pull rod).

  • PDF

반응면 기법을 이용한 초음속 전투기 날개의 다학제간 다점 설계 (Multidisciplinary Multi-Point Design Optimization of Supersonic fighter Wing Using Response Surface Methodology)

  • 김유신;김재무
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.173-176
    • /
    • 2004
  • In this study, the multidisciplinary aerodynamic-structural optimal design is carried out for the supersonic fighter wing. Through the aeroelastic analyses of the various candidate wings, the aerodynamic and structural performances are calculated such as the lift coefficient, the drag coefficient and the deformation of the wing. In general, the supersonic fighter is maneuvered under the various flight conditions and those conditions must be considered all together during the design process. The multi-point design, therefore, is deemed essential. For this purpose, supersonic dash, long cruise range and high angle of attack maneuver are selected as representative design points. Based on the calculated performances of the candidate wings, the response surfaces for the objectives and constraints are generated and the supersonic fighter wing is designed for better aerodynamic performances and less weights than the baseline. At each design point, the single-point design is performed to obtain better performances. Finally, the multi-point design is performed to improve the aerodynamic and structural performances for all design points. The optimization results of the multi-point design are compared with those of the single-point designs and analyzed in detail.

  • PDF

충돌을 고려한 안전띠 일체형 의자의 다분야 통합최적설계 (Application of a Multidisciplinary Design Optimization Algorithm to Design of a Belt Integrated Seat Considering Crashworthiness)

  • 신문균;강병수;박경진
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.395-402
    • /
    • 2005
  • Recently Multidisciplinary Design Optimization Based on Independent Subspaces (MDOIS), an MDO (multidisciplinary design optimization) algorithm, has been proposed. In this research, an MDO problem is defined for design of a belt integrated seat considering crashworthiness, and MDOIS is applied to solve the problem. The crash model consists of an airbag, a belt integrated seat (BIS), an energy absorbing steering system, and a safety belt. It is found that the current design problem has two disciplines - structural nonlin- ear analysis and occupant analysis. The interdisciplinary relationship between the disciplines is identified and is addressed in the system analysis step in MDOIS. Interdisciplinary variables are belt load and stiffness of the seat, which are determined in system analysis step. The belt load is passed to the structural analysis subspace and stiffness of the seat back frame to the occupant analysis subspace. Determined design vari- ables in each subspace are passed to the system analysis step. In this way, the design process iterates until the convergence criterion is satisfied. As a result of the design, the weight of the BIS and Head Injury Crite- rion (HIC) of an occupant are reduced with specified constraints satisfied at the same time. Since the system analysis cannot be formulated in an explicit form in the current example, an optimization problem is formu - lated to solve the system analysis. The results from MDOIS are discussed.

공통설계변수를 고려한 독립적하부시스템에 의한 다분야통합최적설계 (Multidisciplinary Design Optimization Based on Independent Subspaces with Common Design Variables)

  • 신정규;박경진
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.355-364
    • /
    • 2007
  • Multidisciplinary design optimization based on independent subspaces (MDOIS) is a simple and practical method that can be applied to the practical engineering MDO problems. However, the current version of MDOIS does not handle the common design variables. A new version of MDOIS is proposed and named as MDOIS/2006. It is a two-level MDO method while the original MDOIS is a single-level method. At first, system analysis is performed to solve the coupling in the analysis. If the termination criteria are not satisfied, each discipline solves its own design problem. Each discipline in the lower level solves the problem with common design variables while they are constrained by equality constraints. In the upper level, the common design variables of related disciplines are determined by using the optimum sensitivity of the objective function. To validate MDOIS/2006, mathematical problem and NASA test bed problem are solved. The results are compared with those from other MDO methods. Finally, MDOIS/2006 is applied to flow patterner design and shows that it can be successfully applied to the practical engineering MDO problem.

원자로용 수중탐상기의 구조해석 (Structural Analysis of RIROB(Reactor Inspection Robot))

  • 최석호;권영주;김재희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.613-616
    • /
    • 1997
  • MDO(Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided engineering(CAE) system. And this paper treats the structural design problem of RIROB(Reactor Inspection Robot) through the application of MDO methodology. In a MDO methodology application to the structural design of RIBOS, kinetodynamic analysis is done using a simple fluiddynamic analysis model for the warter flow over the sensor support surface instead of difficult fluid dynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. The minimum thickness (0.8cm) of the RIROB housing is obtained for the safe design of RIROB. The kinetodynamic analysis of RIROB. The kinetodynamic analysis of RIROB is done using ADAMS and the static structural analysis of RIROB is done using NISA.

  • PDF

Collaborative Optimization을 이용한 지구관측위성의 다분야 통합 최적 개념설계 (Multidisciplinary Design Optimization of Earth Observation Satellite Conceptual Design using Collaborative Optimization)

  • 김홍래;장영근
    • 한국항공우주학회지
    • /
    • 제43권6호
    • /
    • pp.568-583
    • /
    • 2015
  • 본 논문에서는 다분야 통합 설계최적화(MDO : Multidisciplinary Design Optimization)를 적용한 지구관측위성의 개념설계 과정 및 결과를 기술하였다. 현재까지 구축된 지구관측 위성의 데이터베이스를 기반으로 주요 파라미터에 대한 개념설계식을 정립하였으며, 다분야 통합 최적설계 아키텍처 중 CO(Collaborative Optimization) 기반을 이용하여 지구관측 위성 시스템의 최적 개념설계를 수행할 수 있는 설계 도구를 개발하였다. 주어진 제약조건을 만족시키면서 위성의 총 질량을 최소화하는 것을 설계 목표로 설정하였으며, 최적화 알고리즘으로는 SQP(Sequential Quadratic Programming)를 이용하였다. 다분야 통합 최적설계를 적용한 개념설계 결과와 ASNARO-1 및 IKONOS-2 위성 규격의 비교를 통해 해당설계도구의 유용성을 검증하였다.

MDO기법에 의한 임프란트설계에서 요구되는 저작시 상.하악골치아사이의 충격력 계산 (Calculation of the Impact Force Applied on the Tooth of Upper and Lower Jaw-Bones in Masticating for the Design of a Dental Implant System.)

  • 권영주
    • 한국CDE학회논문집
    • /
    • 제7권1호
    • /
    • pp.27-33
    • /
    • 2002
  • MDO(Multidisciplinary Design Optimization) methodology is a new technology to solve a complicate design problem with a large number of design variables and constraints. The design of a dental implant system is a typical complicate problem, and so it requires the MDO methodology. Actually, several analyses such as rigid body dynamic analysis and structural stress analysis etc. should be carried out in the MDO methodology application to the design of a dental implant system. In this paper, as a first step of MDO methodology application to the design of a dental implant system, the impact force which is applied on the tooth in masticating is calculated through the rigid body dynamic analysis of upper and lower jaw-bones. This analysis is done using ADAMS. The impact force calculated through the rigid body dynamic analysis can be used for the structural stress analysis of a dental implant system which is needed for the design of a dental implant system. In addition, the rigid body dynamic analysis results also show that the impact time decreases as the impact force increases, the largest impact force occurs on the front tooth, and the impact force is almost normal to the tooth surface with a slight tangential force.

분야별 하부시스템의 최적화를 통합한 분해기반 MDO 방법론 (A Decomposition Based MDO by Coordination of Disciplinary Subspace Optimization)

  • 정희석;이종수
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1822-1830
    • /
    • 2002
  • The paper describes the development of a decomposition based multidisciplinary design optimization (MDO) method that coordinates each of disciplinary subspace optimization (DSO). A multidisciplinary design system considered in the present study is decomposed into a number of subspaces based on their own design objective and constraints associated with engineering discipline. The coupled relations among subspaces are identified by interdisciplinary design variables. Each of subsystem level optimization, that is DSO would be performed in parallel, and the system level coordination is determined by the first order optimal sensitivities of subspace objective functions with respect to interdisciplinary design variables. The central of the present work resides on the formulation of system level coordination strategy and its capability in decomposition based MDO. A fluid-structure coupled design problem is explored as a test-bed to support the proposed MDO method.