• Title/Summary/Keyword: Multidisciplinary Design

Search Result 270, Processing Time 0.028 seconds

Decomposition Based Parallel Processing Technique for Efficient Collaborative Optimization (효율적 분산협동설계를 위한 분해 기반 병렬화 기법의 개발)

  • Park, Hyung-Wook;Kim, Sung-Chan;Kim, Min-Soo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.818-823
    • /
    • 2000
  • In practical design studies, most of designers solve multidisciplinary problems with complex design structure. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder original design processes to minimize total cost and time. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

  • PDF

A New Decomposition Method for Parallel Processing Multi-Level Optimization

  • Park, Dong-Hoon;Park, Hyung-Wook;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.609-618
    • /
    • 2002
  • In practical designs, most of the multidisciplinary problems have a large-size and complicate design system. Since multidisciplinary problems have hundreds of analyses and thousands of variables, the grouping of analyses and the order of the analyses in the group affect the speed of the total design cycle. Therefore, it is very important to reorder and regroup the original design processes in order to minimize the total computational cost by decomposing large multidisciplinary problems into several multidisciplinary analysis subsystems (MDASS) and by processing them in parallel. In this study, a new decomposition method is proposed for parallel processing of multidisciplinary design optimization, such as collaborative optimization (CO) and individual discipline feasible (IDF) method. Numerical results for two example problems are presented to show the feasibility of the proposed method.

Parallel Processing Based Decompositon Technique for Efficient Collaborative Optimization (효율적 분산협동최적설계를 위한 병렬처리 기반 분해 기법)

  • Park, Hyeong-Uk;Kim, Seong-Chan;Kim, Min-Su;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.883-890
    • /
    • 2001
  • In practical design studies, most of designers solve multidisciplinary problems with large size and complex design system. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder the original design processes to minimize total computational cost. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

A Study on the Multidisciplinary Design Education in Design Academy Eindhoven (네덜란드 디자인 아카데미 아인트호벤의 통합적 디자인 교육에 관한 연구)

  • Kang, Hyun-Dae;Kwak, Chul-An
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • This study particularly looked at educational philosophy and content of Design Academy Eindhoven in Holland which provides multidisciplinary design education. For it might be important data for examining the educational substance and directivity in design that help construct education system in design for a new era among the varying design paradigm. The biggest feature of DAE education system designed for students to optimize their ability with systematic education of 8 contexts with 4 approaches through innovative specialty system. Besides, their interaction helps students major in what is individual specialty. Most of all, the study on the contents of DAE's multidisciplinary education is expected to be significant data for our design education that lacks integrative perspective in the respect that students might be able to develop their identity as an individual designer in changing society beyond the mere technical and formative level of design.

  • PDF

ALUMINUM SPACE FRAME B.I.W. OPTIMIZATION CONSIDERING MULTIDISCIPLINARY DESIGN CONSTRAINTS

  • KIM B. J.;KIM M. S.;HEO S. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.635-641
    • /
    • 2005
  • This paper presents an ASF (Aluminum Space Frame) BIW (Body in White) optimal design, which minimizes weight and satisfies multidisciplinary constraints such as static stiffness, vibration characteristics, low-/high-speed crash, and occupant safety. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method were used for efficient RSM modeling. Likewise, the ALM method was used to solve the approximate optimization problem. The approximate optimum was sequentially added to remodel the RSM. The proposed optimization method uses only 20 analyses to solve the 11-design variable problem. Moreover, the optimal design can achieve $15.6\%$ weight reduction while satisfying all the multidisciplinary design constraints.

Reconfigurable Multidisciplinary Design Optimization Framework (재구성이 가능한 다분야통합최적설계 프레임웍의 개발)

  • Lee, Jang-Hyo;Lee, Se-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • Modern engineering design problems involve complexity of disciplinary coupling and difficulty of problem formulation. Multidisciplinary design optimization can overcome the complexity and design optimization software or frameworks can lessen the difficulty. Recently, a growing number of new multidisciplinary design optimization techniques have been proposed. However, each technique has its own pros and cons and it is hard to predict a priori which technique is more efficient than others for a specific problem. In this study, a software system has been developed to directly solve MDO problems with minimal input required. Since the system is based on MATLAB, it can exploit the optimization toolbox which is already developed and proven to be effective and robust. The framework is devised to change an MDO technique to another as the optimization goes on and it is called a reconfigurable MDO framework. Several numerical examples are shown to prove the validity of the reconfiguration idea and its effectiveness.

System Decomposition Technique using Multiple Objective Genetic Algorithm (다목적 유전알고리듬을 이용한 시스템 분해 기법)

  • Park, Hyung-Wook;Kim, Min-Soo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.170-175
    • /
    • 2001
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several multidisciplinary analysis subsystems (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multiple objective genetic algorithm (MOGA), and a sample test case is presented to show the effects of optimizing the sequence with MOGA.

  • PDF

Development of a multidisciplinary design optimization framework for an efficient supersonic air vehicle

  • Allison, Darcy L.;Morris, Craig C.;Schetz, Joseph A.;Kapania, Rakesh K.;Watson, Layne T.;Deaton, Joshua D.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.17-44
    • /
    • 2015
  • A modular multidisciplinary analysis and optimization framework has been built with the goal of performing conceptual design of an advanced efficient supersonic air vehicle. This paper addresses the specific challenge of designing this type of aircraft for a long range, supersonic cruise mission with a payload release. The framework includes all the disciplines expected for multidisciplinary supersonic aircraft design, although it also includes disciplines specifically required by an advanced aircraft that is tailless and has embedded engines. Several disciplines have been developed at multifidelity levels. The framework can be readily adapted to the conceptual design of other supersonic aircraft. Favorable results obtained from running the analysis framework for a B-58 supersonic bomber test case are presented as a validation of the methods employed.

The Application of Micro Controller Board to Engineering Education for Multidisciplinary Capstone Design (한국다학제간 캡스톤디자인에 마이크로콘트롤러 보드의 적용)

  • Yoon, Seok-Beom;Jang, Eun-Young
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.531-537
    • /
    • 2014
  • In this paper, we introduce a model of the teaching and learning method for multidisciplinary convergence capstone design at Kongju National University's Engineering Department. At Kongju national University, various capstone design works are designed and proceeded by multidisciplinary students at the summer session. The multidisciplinary approach described in this paper includes the involvement of five department's student who have not collaborated in capstone design experience. This study focuses on multidisciplinary capstone design education by using the micro controller board called Arduino Uno that consists of an assortment of sensors and actuators. The result of self-satisfaction survey was shown the meaningful teaching process for the engineering department students who could have more creative and industrial experiences. As a result, we are able to get the result of the possible directions for future technology education in the area of convergence multidisciplinary capstone design.

The Development of the Rotorcraft Multidisciplinary Design Optimization Framework and Conceptual Design Using the KHP-SDM RMDO (회전익비행체 다분야통합 최적설계 프레임워크 개발 및 KHP-SDM RMDO를 이용한 회전익비행체 개념설계)

  • Choi, Won;Hwang, Yu-Sang;Kim, Cheol-Ho;Kim, Sang-Hun;Lee, Dong-Ho;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.685-692
    • /
    • 2009
  • This paper dealt with the development of the Framework for Multidisciplinary Design Optimization for the rotorcraft design concept and the building process of KHP(Korea Helicopter Project) - SDM(Simulation Data Management) system to manage various analysis data, which are used in the rotorcraft development phase. KHP-SDM RMDO(Rotorcraft Multidisciplinary Design Optimization) framework, which applied optimization modules of KHP-SDM and integrated the developed Multidisciplinary analysis modules, was constructed in the KHP-SDM. The results of the rotorcraft conceptual design using KHP-SDM RMDO showed that the framework was evaluated to be successfully constructed.