• Title/Summary/Keyword: Multidimensional dynamic modeling

Search Result 6, Processing Time 0.025 seconds

Multidimensional Dynamic Water Quality Modeling of Organic Matter and Trophic State in the Han River System (한강수계에서의 다차원 시변화 유기물 및 영양상태 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.151-164
    • /
    • 2013
  • Multidimensional dynamic water quality model of organic matter and trophic state was applied to the Han River system. The model was calibrated using field measurement data obtained during the year of 2007. The model results showed reasonable performance in predicting temporal variations of TN, TP, Chl-a and BOD concentrations. The applied integrated modeling system can be effectively used to simulate water quality as well as hydrodynamic and water temperature for river-lake continuous system in the Han River. Utilizing the calibrated model, we analyzed the spatial and temporal distributions of TN, TP, Chl-a and BOD concentrations in the Han River system. The temporal variations of water quality at each river reach and lake were effectively simulated with the developed model and spatial distribution of water qualities in the Han River system could be compared. The multidimensional dynamic modeling system can simulate the water qualities of entire waterbody where Lake Paldang and the incoming flows are included using single modeling system. So it can be effectively used for integrated water quality management of the Han River system.

Multidimensional Hydrodynamic and Water Temperature Modeling of Han River System (한강 수계에서의 다차원 시변화 수리.수온 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.866-881
    • /
    • 2012
  • Han River is a complex water system consisting of many lakes. The water quality of Lake Paldang is significantly affected by incoming flows, which are the South and North branches of the Han River, and the Kyungan Stream. In order to manage the water quality of the Lake Paldang, we should consider the entire water body where the incoming flows are included. The objectives of this study are to develop an integrated river and lake modeling system for Han River system using a multidimensional dynamic model and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using field measurement data obtained in 2007 and 2008. The model showed satisfactory performance in predicting temporal variations of water level, flow rate and temperature. The Root Mean Square Error (RMSE) for water temperature simulation were $0.88{\sim}2.13^{\circ}C$ (calibration period) and $1.05{\sim}2.00^{\circ}C$ (verification period) respectively. And Nash-Sutcliffe Efficiency (NSE) for water temperature simulation were 1089~0.98 (calibration period) and 0.90~0.98 (verification period). Utilizing the validated model, we analyzed the spatial and temporal distributions of temperature within Han River system. The variations of temperature along the river reaches and vertical thermal profiles for each lakes were effectively simulated with developed model. The suggested modeling system can be effectively used for integrated water quality management of water system consisting of many rivers and lakes.

Extending the Multidimensional Data Model to Handle Complex Data

  • Mansmann, Svetlana;Scholl, Marc H.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.125-160
    • /
    • 2007
  • Data Warehousing and OLAP (On-Line Analytical Processing) have turned into the key technology for comprehensive data analysis. Originally developed for the needs of decision support in business, data warehouses have proven to be an adequate solution for a variety of non-business applications and domains, such as government, research, and medicine. Analytical power of the OLAP technology comes from its underlying multidimensional data model, which allows users to see data from different perspectives. However, this model displays a number of deficiencies when applied to non-conventional scenarios and analysis tasks. This paper presents an attempt to systematically summarize various extensions of the original multidimensional data model that have been proposed by researchers and practitioners in the recent years. Presented concepts are arranged into a formal classification consisting of fact types, factual and fact-dimensional relationships, and dimension types, supplied with explanatory examples from real-world usage scenarios. Both the static elements of the model, such as types of fact and dimension hierarchy schemes, and dynamic features, such as support for advanced operators and derived elements. We also propose a semantically rich graphical notation called X-DFM that extends the popular Dimensional Fact Model by refining and modifying the set of constructs as to make it coherent with the formal model. An evaluation of our framework against a set of common modeling requirements summarizes the contribution.

Efficient Storage Techniques for Multidimensional Index Structures in Multi-Zoned Disk Environments (다중 존 디스크 환경에서 다차원 인덱스 구조의 효율적 저장 기법)

  • Yu, Byung-Gu;Kim, Seon-Ho;Chang, Jae-Young
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.315-327
    • /
    • 2007
  • The performance of database applications with large sets of multidimensional data depends on the performance of its access methods and the underlying disk system. In modeling the disk system, even though modem disks are manufactured with multiple physical zones, conventional access methods have been developed based on a traditional disk model with many simplifying assumptions. Thus, there is a marked lack of investigation on how to enhance the performance of access methods given a zoned disk model. The paper proposes novel zoning techniques that can be applied to any multidimensional access methods, both static and dynamic, enhancing the effective data transfer rate of underlying disk system by fully utilizing its zone characteristics. Our zoning techniques include data placement algorithms for multidimensional index structures and accompanying localized query processing algorithms for range queries. The experimental results show that our zoning techniques significantly improve the query performance.

Modeling of the defect on the slit in Patterned Vertical Aligned (PVA) LC Cell using the fast Q-tensor method

  • Son, Jung-Hee;Choi, Yong-Hyun;Lee, Wa-Ryong;Choi, Seong-Wook;Kim, Kyung-Mi;Hue, Tae-Kyung;Yang, Jin-Seok;Lee, Seung-Hee;Lee, Gi-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.858-861
    • /
    • 2006
  • In this paper we model the liquid crystal director field in the Patterned Vertical Alignment (PVA) LC using the fast Q-tensor method, which can model multidimensional director configurations with defects in the liquid crystal director field. We observed the dynamic behaviors of the defect experimentally by applying the voltage and modeled the LC director field with defect in the active area of the PVA cell. As a result, we could also calculate the optical transmittance.

  • PDF

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF