• 제목/요약/키워드: Multidimensional chromatography/Mass Spectrometry

검색결과 4건 처리시간 0.02초

Multidimensional Chromatography/Mass Spectrometry를 이용한 혼합 폐플라스틱의 열분해 오일 특성 평가에 관한 연구 (Study on Oil Production from Pyrolysis of Mixed Plastic Waste Using Multidimensional Chromatography)

  • 김석완
    • 한국환경과학회지
    • /
    • 제11권4호
    • /
    • pp.375-382
    • /
    • 2002
  • The total hydrocarbon distribution of oil products obtained from the pyrolysis of four kinds of mixtures of polyethylene-polystyrene waste has been studied by multidimensional chromatography(high performance liquid chromatography followed by capillary gas chromatography)/mass spectrometry. Saturated, unsaturated and aromatic hydrocarbons in oil products were selectively pre-separated according to structural groups by HPLC and the weight fraction of each group was estimated by analysis of each component using GC-FID response factors. The hydrocarbon distribution of aliphatic fraction consists of $C_{5}$ to $C_{25}$ saturated and unsaturated hydrocarbons. And that of aromatics fraction consists of benzene, toluene, xylene, styrene, propenyl benzene, naphthalene, and some of derivatives. Pyrolysis temperature did not affect the ratio of total weight fraction of aliphatic over aromatic hydrocarbon distribution in case of PS only and PE-PS mixtures (1:1 and 1:4 wt. ratio) as a feed while affected the ratio of total wt. fraction in case of PE only. The optimal temperature for the maximum oil production was $600^{\circ}C$ for pyrolysis of PS and 1:1 and 1:4 mixtures of PE and PS. The optimal condition for aromatic recovery was $600^{\circ}C$ with 1:1 mixture of PE and PS. In this condition, aromatic was produced up to 90% of total oil product. The maximum yield of toluene, xylene, styrene, and propenyl benzene were 8.6, 8.9, 51.0 and 7.4% of feed for pyrolysis PS at $700^{\circ}C$, respectively. However, only 1.3% naphthalene was recovered at $700^{\circ}C$ with 1:1 PE:PS(by wt.).

A Multidimensional System for Phosphopeptide Analysis Using TiO2 Enrichment and Ion-exchange Chromatography with Mass Spectrometry

  • Cho, Kun;Yoo, Ji-Sun;Kim, Eun-Min;Kim, Jin-Young;Kim, Young-Hwan;Oh, Han-Bin;Yoo, Jong-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3298-3302
    • /
    • 2012
  • Although offline enrichment of phosphorylated peptides is widely used, enrichment for phosphopeptides using $TiO_2$ is often performed manually, which is labor-intensive and can lead to irreproducible results. To address the problems associated with offline enrichment and to improve the effectiveness of phosphopeptide detection, we developed an automated online enrichment system for phosphopeptide analysis. A standard protein mixture comprising BSA, fetuin, crystalline, ${\alpha}$-casein and ${\beta}$-casein, and ovalbumin was assessed using our new system. Our multidimensional system has four main parts: a sample pump, a 20-mm $TiO_2$-based column, a weak anion-exchange, and a strong cation-exchange (2:1 WAX:SCX) separation column with LC/MS. Phosphorylated peptides were successfully detected using the $TiO_2$-based online system with little interference from nonphosphorylated peptides. Our results confirmed that our online enrichment system is a simple and efficient method for detecting phosphorylated peptides.

The Use of Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) for Proteomics Research

  • Ng, Justin Tze-Yang;Hao, Piliang;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • 제5권4호
    • /
    • pp.95-103
    • /
    • 2014
  • Characterization and studies of proteome are challenging because biological samples are complex, with a wide dynamic range of abundance. At present the proteins are identified by digestion into peptides, with subsequent identification of the peptides by mass spectrometry (MS). MS is a powerful technique for the purpose, but it cannot identify every peptide in such complex mixtures simultaneously. For accurate analysis and quantification it is important to separate the peptides first by chromatography into fractions of a size that MS can handle. With these less complex fractions, the probability is increased of identifying peptides of low abundance that would otherwise experience ion suppression effects due to the presence of peptides of high abundance. Enrichment for peptides with certain post-translational modifications helps to increase their detection rates as well. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) is a mixed-mode chromatographic technique which combines the use of electrostatic repulsion and hydrophilic interaction. This review provides an overview of ERLIC and its various proteomics applications. ERLIC has been demonstrated to have good orthogonality to reverse phase liquid chromatography (RPLC), making it useful as a first dimension in multidimensional liquid chromatography (MDLC) and fractionation of digests in general. Peptides elute in order of their isoelectric points and polarity. ERLIC has also been successfully utilized for the enrichment for phosphopeptides and glycopeptides, facilitating their identification. In addition, it is promising for the study of peptide deamidation. ERLIC performs comparably well or better than established methods for these various applications, and serves as a viable and efficient workflow alternative.

Human Proteome Data Analysis Protocol Obtained via the Bacterial Proteome Analysis

  • Kwon, Kyung-Hoon;Park, Gun-Wook;Kim, Jin-Young;Lee, Jeong-Hwa;Kim, Seung-Il;Yoo, Jong-Shin
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.91-95
    • /
    • 2005
  • In the multidimensional protein identification technology of high-throughput proteomics, we use one-dimensional gel electrophoresis and after the separation by two-dimensional liquid chromatography, the sample is analyzed by tandem mass spectrometry. In this study, we have analyzed the Pseudomonas Putida KT2440 protein. From the protein identification, the protein database was combined with its reversed sequence database. From the peptide selection whose error rate is less than 1%, the SEQUEST database search for the tandem mass spectral data identified 2,045 proteins. For each protein, we compared the molecular weight calibrated from 1D-gel band position with the theoretical molecular weight computed from the amino acid sequence, by defining a variable MW$_{corr}$ Since the bacterial proteome is simpler than human proteome considering the complexity and modifications, the proteome analysis result for the Pseudomonas Putida KT2440 could suggest a guideline to build the protocol to analyze human proteome data.

  • PDF