• 제목/요약/키워드: Multidimensional Data Sequences

검색결과 12건 처리시간 0.017초

의미 정보를 이용한 다차원 데이터 시퀀스의 유사성 척도 연구 (A Study of Similarity Measures on Multidimensional Data Sequences Using Semantic Information)

  • 이석룡;이주홍;전석주
    • 정보처리학회논문지D
    • /
    • 제10D권2호
    • /
    • pp.283-292
    • /
    • 2003
  • 연속된 일차원 실수로 이루어진 시계열 데이터는 데이터 마이닝이나 데이터 웨어하우징과 같은 다양한 데이터베이스 응용 분야에서 연구되어져 왔다. 그러나 최근의 복잡한 비즈니스 환경에서, 다차원 데이터 시퀀스(multidimensional data sequence : MDS)는 일차원 시계열 데이터와 더불어 그 중요성이 더해가고 있다. 다차원 데이터 시퀀스의 예로써, 비디오 스트림은 색상과 질감 등의 속성들로 이루어진 다차원 공간상에서 MDS로 나타낼 수 있다. 본 논문에서는 패턴 유사성 검색에서 사용되는 효과적인 유사성 척도를 제시한다. 하나의 MDS는 여러 개의 세그먼트(segment)로 나누어지며, 각 세그먼트는 다양한 의미적인 특징들로 표현된다. 유사성 척도는 이러한 세그먼트에 대해서 정의되는데 이 척도를 사용하여 어떤 주어진 질의 시퀀스에 대하여 무관한 세그먼트들은 검색 대상에서 일차적으로 제외된다. 데이터 시퀀스와 질의 시퀀스 모두 세그먼트 단위로 분할되며, 질의 처리는 전체 시퀀스의 모든 데이터를 검색하지 않고 데이터 세그먼트와 질의 세그먼트의 특징을 비교하는 것을 기초로 하여 수행된다.

다차원 데이타 공간에서 시뭔스 데이타 세트를 위한 클러스터링 기법 (Clustering Technique for Sequence Data Sets in Multidimensional Data Space)

  • 이석룡;임동혁;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제28권4호
    • /
    • pp.655-664
    • /
    • 2001
  • 비디오 스트림이나 음성 아날로그 신호와 같은 연속된 데이타는 특징 공간(feature space)에서 다차원 데이타 시퀀스(multidimensional data sequence)로 모델링될 수 있다. 본 논문에서는 이러한 다차원 데 이타 시퀀스의 효과적인 클러스터링 기법에 대하여 연구한다. 각 시퀀스는 차후의 저장 및 유사성 검색 (similarity search)을 효율적으로 실행하기 위하여 소수 개의 하이퍼 사각형 (hyper-rectangle) 형태의 클러스터로 표현된다. 본 논문에서는 사전에 정의된 수준의 클러스터링 품질을 보장하는 선형 복잡도를 갖는 클러스터링 알고리즘을 제시하고, 다양한 비디오 데이타에 관한 실험을 통하여 알고리즘의 적합성을 보여준다.

  • PDF

VDCluster : 대용량 비디오 시퀀스를 위한 비디오 세그멘테이션 및 클러스터링 알고리즘 (VDCluster : A Video Segmentation and Clustering Algorithm for Large Video Sequences)

  • 이석룡;이주홍;김덕환;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권3호
    • /
    • pp.168-179
    • /
    • 2002
  • 본 논문에서는 비디오 저장이나 검색과 같은 비디오 정보 처리를 위한 중요한 기초 연구로써 비디오의 표현을 위한 효과적인 기법을 제안한다. 비디오 데이타 세트는 수초에서 수분 사이의 상연 시간을 갖는 비디오 클립들의 집합이며, 각 비디오 클립은 연속된 비디오 프레임들로 구성되어 있다. 이 비디오 클립은 다차원 데이타 시퀀스(multidimensional data sequence: MDS)로 표현될 수 있으며, 프레임 사이의 시간적인 정보를 고려하여 비디오 세그먼트로 나누어 지고, 한 클립 내에서 서로 유사한 세그먼트들은 다시 비디오 클러스터로 군집화된다. 따라서, 각 비디오 클립은 소수 개의 비디오 클러스터로 표현되어 진다. 본 논문에서 제안한 비디오 세그멘테이션 및 클러스터링 알고리즘 VDCLuster는 사전에 정의된 일정 수준의 클러스터링 품질을 보장하고 있으며, 다양한 비디오 시퀀스에 대한 실험을 통하여 알고리즘의 효과를 입증한다.

비디오 검색 시스템을 위한 데이터 시퀀스 패턴 유사성 검색 (Pattern Similarity Retrieval of Data Sequences for Video Retrieval System)

  • 이석룡
    • 정보처리학회논문지D
    • /
    • 제13D권3호
    • /
    • pp.347-356
    • /
    • 2006
  • 비디오 스트림은 다차원 공간에서 데이터 포인트의 시퀀스로 표현될 수 있다. 본 논문에서는 시퀀스 내의 데이터 포인트들의 값들의 근사치에 대한 정보와 시퀀스 내의 포인트들의 방향성에 대한 정보를 내포하고 있는 트랜드 벡터(trend vector)에 대한 소개와 이 벡터를 이용하여 데이터 시퀀스를 위한 유사 패턴 검색 기법을 제안한다. 시퀀스는 복수 개의 세그먼트로 분할되며 각 세그먼트는 트랜드 벡터로 표현된다. 질의처리는 시퀀스 내의 각각의 포인트들에 대하여 수행되는 대신, 트랜드 벡터들에 대하여 처리된다. 제안한 기법은 이 벡터를 사용하여 질의와 무관한 데이터 시퀀스들을 데이터베이스로부터 여과하고 질의 시퀀스와 유사한 시퀀스들을 검색하도록 설계되었다. 제안한 기법을 검증하기 위하여 비디오 스트림과 가상으로 생성된 데이터에 관하여 실험을 수행하였으며, 실험 결과 제안한 기법의 정밀도(precision)는 기존의 방법에 비하여 2.1배까지 향상되었으며 처리시간은 45%까지 감소되었음을 보여주고 있다.

시계열 데이터베이스에서 DFT-기반 다차원 인덱스를 위한 물리적 데이터베이스 설계 (Physical Database Design for DFT-Based Multidimensional Indexes in Time-Series Databases)

  • 김상욱;김진호;한병일
    • 한국멀티미디어학회논문지
    • /
    • 제7권11호
    • /
    • pp.1505-1514
    • /
    • 2004
  • 시퀀스 매칭은 시계열 데이터베이스로부터 질의 시퀀스와 변화의 추세가 유사한 데이터 시퀀스들을 검색하는 연산이다. 기존의 대부분의 연구에서는 효과적인 시퀀스 매칭을 위하여 다차원 인덱스를 사용하며, 데이터 시퀀스를 이산 푸리에 변환(Discrete Fourier Transform: DFT)한 후, 단순히 앞의 두 개 내지 세 개의 DFT 계수만을 구성 속성 (organizing attributes)으로 사용함으로써 고차원의 경우 발생하는 차원 저주(dimensionality curse) 문제를 해결한다. 본 논문에서는 기존의 단순한 기법이 가지는 성능 상의 문제점들을 지적하고, 이러한 문제점들을 해결하는 최적의 다차원 인덱스 구성 기법을 제안한다. 제안된 기법은 대상이 되는 시계열 데이터베이스의 특성을 사전에 분석함으로써 변별력이 뛰어난 요소들을 다차원 인덱스의 구성 속성으로 선정하며, 비용 모델(cost model)을 기반으로 한 시퀀스 매칭 비용의 추정을 통하여 다차원 인덱스에 참여하는 최적의 구성 속성의 수를 결정한다. 제안된 기법의 우수성을 규명하기 위하여 실험을 통한기존 기법과의 성능 비교를 수행하였다 실험 결과에 의하면, 제안된 기법은 기존의 기법에 비교하여 매우 큰 성능 개선 효과를 가지는 것으로 나타났다.

  • PDF

타임 워핑을 지원하는 효율적인 서브시퀀스 매칭 기법 (A Subsequence Matching Technique that Supports Time Warping Efficiently)

  • 박상현;김상욱;조준서;이헌길
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.167-179
    • /
    • 2001
  • This paper discusses an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, we suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multi-dimensional index using a feature vector as indexing attributes. For query precessing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verily the superiority of our method, we perform extensive experiments. The results reseal that our method achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.

  • PDF

시퀀스 데이터베이스에서 타임 워핑을 지원하는 효과적인 인덱스 기반 서브시퀀스 매칭 (An Index-Based Approach for Subsequence Matching Under Time Warping in Sequence Databases)

  • 박상현;김상욱;조준서;이헌길
    • 정보처리학회논문지D
    • /
    • 제9D권2호
    • /
    • pp.173-184
    • /
    • 2002
  • 본 논문에서는 대용량 시퀀스 데이터베이스에 타임 워핑을 지원하는 인덱스 기반 서브시퀀스 매칭에 관하여 논의한다. 타임 워핑은 시퀀스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해준다. 최근의 연구에서 타임 워핑을 지원하는 효과적인 전체 매칭 기법을 제안된바 있다. 이 기법은 데이터 시퀀스들로부터 타임 워핑에 영향을 받지 않는 특징 벡터들의 집합을 대상으로 인덱스를 구성한다. 또한, 특징 공간상에서의 필터링을 위하여 삼각형 부등식을 만족하는 타임 워핑 거리의 하한 함수를 사용한다. 본 연구에서는 이 기존의 연구에 슬라이딩 윈도우를 기반으로 하는 접두어-질의 방법을 결합하는 새로운 기법을 제안한다. 인덱싱을 위하여 각 슬라이딩 윈도우와 대응되는 서브 시퀀스로부터 특징 벡터를 추출하고, 이 특징 벡터를 인덱싱 애트리뷰트로 사용하는 다차원 인덱스를 구성한다. 질의 처리를 위하여, 조건을 만족하는 질의 접두어들에 대한 특징 벡터들을 이용하여 다수의 인덱스 검색을 수행한다. 제안된 기법은 대용량의 데이터베이스에서도 효과적인 서브시퀀스 매칭을 지원한다. 본 연구에서는 제안된 기법이 착오 기각을 유발시키지 않음을 증명한다. 제안된 기법의 우수성을 규명하기 위하여 다양한 실험을 수행한다. 실험 결과에 따르면, 제안된 기법은 실제 S&P 500 주식 데이터와 대용량의 생성 데이터 모두에 대하여 큰 성능 개선 효과를 보이는 것으로 나타났다.

EMRQ: An Efficient Multi-keyword Range Query Scheme in Smart Grid Auction Market

  • Li, Hongwei;Yang, Yi;Wen, Mi;Luo, Hongwei;Lu, Rongxing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권11호
    • /
    • pp.3937-3954
    • /
    • 2014
  • With the increasing electricity consumption and the wide application of renewable energy sources, energy auction attracts a lot of attention due to its economic benefits. Many schemes have been proposed to support energy auction in smart grid. However, few of them can achieve range query, ranked search and personalized search. In this paper, we propose an efficient multi-keyword range query (EMRQ) scheme, which can support range query, ranked search and personalized search simultaneously. Based on the homomorphic Paillier cryptosystem, we use two super-increasing sequences to aggregate multidimensional keywords. The first one is used to aggregate one buyer's or seller's multidimensional keywords to an aggregated number. The second one is used to create a summary number by aggregating the aggregated numbers of all sellers. As a result, the comparison between the keywords of all sellers and those of one buyer can be achieved with only one calculation. Security analysis demonstrates that EMRQ can achieve confidentiality of keywords, authentication, data integrity and query privacy. Extensive experiments show that EMRQ is more efficient compared with the scheme in [3] in terms of computation and communication overhead.

유사 시퀀스 매칭을 위한 하이브리드 저차원 변환 (Hybrid Lower-Dimensional Transformation for Similar Sequence Matching)

  • 문양세;김진호
    • 정보처리학회논문지D
    • /
    • 제15D권1호
    • /
    • pp.31-40
    • /
    • 2008
  • 유사 시퀀스 매칭에서는 고차원인 시퀀스를 저차원의 점으로 변환하기 위하여 저차원 변환을 사용한다. 그런데, 이러한 저차원 변환은 시계열 데이터의 종류에 따라 인덱싱 성능에 있어서 큰 차이를 나타낸다. 즉, 어떤 저차원 변환을 선택하느냐가 유사 시퀀스 매칭의 인덱싱 성능에 큰 영향을 주게 된다. 이 문제를 해결하기 위하여, 본 논문에서는 하나의 인덱스에서 두 개 이상의 저차원 변환을 통합하여 사용하는 하이브리드 접근법을 제안한다. 먼저, 하나의 시퀀스에 두 개 이상의 저차원 변환을 적용하는 하이브리드 저차원 변환의 개념을 제안하고, 변환된 시퀀스간의 거리를 계산하는 하이브리드 거리를 정의한다. 다음으로, 이러한 하이브리드 접근법 사용하면 유사 시퀀스 매칭을 정확하게 수행할 수 있음을 정형적으로 증명한다. 또한, 제안한 하이브리드 접근법을 사용하는 인덱스 구성 및 유사 시퀀스 매칭 알고리즘을 제시한다. 다양한 시계열 데이터에 대한 실험 결과, 제안한 하이브리드 접근법은 단일 저차원 변환을 사용하는 경우에 비해서 우수한 성능을 보이는 것으로 나타났다. 이 같은 결과를 볼 때, 제안한 하이브리드 접근법은 다양한 특성을 지닌 다양한 시계열 데이터에 두루 적용될 수 있는 우수한 방법이라 사료된다.

권투 모션 인식을 위한 알고리즘 비교 연구 (A Study on Comparing algorithms for Boxing Motion Recognition)

  • 한창호;김순철;오춘석;유영기
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.111-117
    • /
    • 2008
  • 본 논문은 권투 모션 인식에 대한 연구로서 게임이나, 애니메이션 등의 분야에 응용될 수 있다. 권투 모션의 인식을 위하여 주성분분석과 동적시간정합 알고리즘을 적용한 실험을 하여 비교 연구하였다. 주성분분석 이론은 인식하고자 하는 데이터의 차원을 축소하여 특정 벡터를 추출하여 비교하는 알고리즘이며, 동적시간정합은 두 순차적인 데이터의 유사성을 구하는 알고리즘이다. 모션 인식을 위해 두 상이한 알고리즘을 비교하여 성능을 고찰하고, 권투 모션을 구성하기 위해 만든 모션캡쳐 시스템을 소개한다. 구성된 권투 모션 데이터로부터 모션 그래프를 구성하고, 정규화 과정을 처리한 후, 각각 5명의 연기자의 모션에 대해 인식을 시도하여 실험을 통해 인식률 결과를 보여준다.

  • PDF