연속된 일차원 실수로 이루어진 시계열 데이터는 데이터 마이닝이나 데이터 웨어하우징과 같은 다양한 데이터베이스 응용 분야에서 연구되어져 왔다. 그러나 최근의 복잡한 비즈니스 환경에서, 다차원 데이터 시퀀스(multidimensional data sequence : MDS)는 일차원 시계열 데이터와 더불어 그 중요성이 더해가고 있다. 다차원 데이터 시퀀스의 예로써, 비디오 스트림은 색상과 질감 등의 속성들로 이루어진 다차원 공간상에서 MDS로 나타낼 수 있다. 본 논문에서는 패턴 유사성 검색에서 사용되는 효과적인 유사성 척도를 제시한다. 하나의 MDS는 여러 개의 세그먼트(segment)로 나누어지며, 각 세그먼트는 다양한 의미적인 특징들로 표현된다. 유사성 척도는 이러한 세그먼트에 대해서 정의되는데 이 척도를 사용하여 어떤 주어진 질의 시퀀스에 대하여 무관한 세그먼트들은 검색 대상에서 일차적으로 제외된다. 데이터 시퀀스와 질의 시퀀스 모두 세그먼트 단위로 분할되며, 질의 처리는 전체 시퀀스의 모든 데이터를 검색하지 않고 데이터 세그먼트와 질의 세그먼트의 특징을 비교하는 것을 기초로 하여 수행된다.
비디오 스트림이나 음성 아날로그 신호와 같은 연속된 데이타는 특징 공간(feature space)에서 다차원 데이타 시퀀스(multidimensional data sequence)로 모델링될 수 있다. 본 논문에서는 이러한 다차원 데 이타 시퀀스의 효과적인 클러스터링 기법에 대하여 연구한다. 각 시퀀스는 차후의 저장 및 유사성 검색 (similarity search)을 효율적으로 실행하기 위하여 소수 개의 하이퍼 사각형 (hyper-rectangle) 형태의 클러스터로 표현된다. 본 논문에서는 사전에 정의된 수준의 클러스터링 품질을 보장하는 선형 복잡도를 갖는 클러스터링 알고리즘을 제시하고, 다양한 비디오 데이타에 관한 실험을 통하여 알고리즘의 적합성을 보여준다.
본 논문에서는 비디오 저장이나 검색과 같은 비디오 정보 처리를 위한 중요한 기초 연구로써 비디오의 표현을 위한 효과적인 기법을 제안한다. 비디오 데이타 세트는 수초에서 수분 사이의 상연 시간을 갖는 비디오 클립들의 집합이며, 각 비디오 클립은 연속된 비디오 프레임들로 구성되어 있다. 이 비디오 클립은 다차원 데이타 시퀀스(multidimensional data sequence: MDS)로 표현될 수 있으며, 프레임 사이의 시간적인 정보를 고려하여 비디오 세그먼트로 나누어 지고, 한 클립 내에서 서로 유사한 세그먼트들은 다시 비디오 클러스터로 군집화된다. 따라서, 각 비디오 클립은 소수 개의 비디오 클러스터로 표현되어 진다. 본 논문에서 제안한 비디오 세그멘테이션 및 클러스터링 알고리즘 VDCLuster는 사전에 정의된 일정 수준의 클러스터링 품질을 보장하고 있으며, 다양한 비디오 시퀀스에 대한 실험을 통하여 알고리즘의 효과를 입증한다.
비디오 스트림은 다차원 공간에서 데이터 포인트의 시퀀스로 표현될 수 있다. 본 논문에서는 시퀀스 내의 데이터 포인트들의 값들의 근사치에 대한 정보와 시퀀스 내의 포인트들의 방향성에 대한 정보를 내포하고 있는 트랜드 벡터(trend vector)에 대한 소개와 이 벡터를 이용하여 데이터 시퀀스를 위한 유사 패턴 검색 기법을 제안한다. 시퀀스는 복수 개의 세그먼트로 분할되며 각 세그먼트는 트랜드 벡터로 표현된다. 질의처리는 시퀀스 내의 각각의 포인트들에 대하여 수행되는 대신, 트랜드 벡터들에 대하여 처리된다. 제안한 기법은 이 벡터를 사용하여 질의와 무관한 데이터 시퀀스들을 데이터베이스로부터 여과하고 질의 시퀀스와 유사한 시퀀스들을 검색하도록 설계되었다. 제안한 기법을 검증하기 위하여 비디오 스트림과 가상으로 생성된 데이터에 관하여 실험을 수행하였으며, 실험 결과 제안한 기법의 정밀도(precision)는 기존의 방법에 비하여 2.1배까지 향상되었으며 처리시간은 45%까지 감소되었음을 보여주고 있다.
시퀀스 매칭은 시계열 데이터베이스로부터 질의 시퀀스와 변화의 추세가 유사한 데이터 시퀀스들을 검색하는 연산이다. 기존의 대부분의 연구에서는 효과적인 시퀀스 매칭을 위하여 다차원 인덱스를 사용하며, 데이터 시퀀스를 이산 푸리에 변환(Discrete Fourier Transform: DFT)한 후, 단순히 앞의 두 개 내지 세 개의 DFT 계수만을 구성 속성 (organizing attributes)으로 사용함으로써 고차원의 경우 발생하는 차원 저주(dimensionality curse) 문제를 해결한다. 본 논문에서는 기존의 단순한 기법이 가지는 성능 상의 문제점들을 지적하고, 이러한 문제점들을 해결하는 최적의 다차원 인덱스 구성 기법을 제안한다. 제안된 기법은 대상이 되는 시계열 데이터베이스의 특성을 사전에 분석함으로써 변별력이 뛰어난 요소들을 다차원 인덱스의 구성 속성으로 선정하며, 비용 모델(cost model)을 기반으로 한 시퀀스 매칭 비용의 추정을 통하여 다차원 인덱스에 참여하는 최적의 구성 속성의 수를 결정한다. 제안된 기법의 우수성을 규명하기 위하여 실험을 통한기존 기법과의 성능 비교를 수행하였다 실험 결과에 의하면, 제안된 기법은 기존의 기법에 비교하여 매우 큰 성능 개선 효과를 가지는 것으로 나타났다.
This paper discusses an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, we suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multi-dimensional index using a feature vector as indexing attributes. For query precessing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verily the superiority of our method, we perform extensive experiments. The results reseal that our method achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.
본 논문에서는 대용량 시퀀스 데이터베이스에 타임 워핑을 지원하는 인덱스 기반 서브시퀀스 매칭에 관하여 논의한다. 타임 워핑은 시퀀스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해준다. 최근의 연구에서 타임 워핑을 지원하는 효과적인 전체 매칭 기법을 제안된바 있다. 이 기법은 데이터 시퀀스들로부터 타임 워핑에 영향을 받지 않는 특징 벡터들의 집합을 대상으로 인덱스를 구성한다. 또한, 특징 공간상에서의 필터링을 위하여 삼각형 부등식을 만족하는 타임 워핑 거리의 하한 함수를 사용한다. 본 연구에서는 이 기존의 연구에 슬라이딩 윈도우를 기반으로 하는 접두어-질의 방법을 결합하는 새로운 기법을 제안한다. 인덱싱을 위하여 각 슬라이딩 윈도우와 대응되는 서브 시퀀스로부터 특징 벡터를 추출하고, 이 특징 벡터를 인덱싱 애트리뷰트로 사용하는 다차원 인덱스를 구성한다. 질의 처리를 위하여, 조건을 만족하는 질의 접두어들에 대한 특징 벡터들을 이용하여 다수의 인덱스 검색을 수행한다. 제안된 기법은 대용량의 데이터베이스에서도 효과적인 서브시퀀스 매칭을 지원한다. 본 연구에서는 제안된 기법이 착오 기각을 유발시키지 않음을 증명한다. 제안된 기법의 우수성을 규명하기 위하여 다양한 실험을 수행한다. 실험 결과에 따르면, 제안된 기법은 실제 S&P 500 주식 데이터와 대용량의 생성 데이터 모두에 대하여 큰 성능 개선 효과를 보이는 것으로 나타났다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권11호
/
pp.3937-3954
/
2014
With the increasing electricity consumption and the wide application of renewable energy sources, energy auction attracts a lot of attention due to its economic benefits. Many schemes have been proposed to support energy auction in smart grid. However, few of them can achieve range query, ranked search and personalized search. In this paper, we propose an efficient multi-keyword range query (EMRQ) scheme, which can support range query, ranked search and personalized search simultaneously. Based on the homomorphic Paillier cryptosystem, we use two super-increasing sequences to aggregate multidimensional keywords. The first one is used to aggregate one buyer's or seller's multidimensional keywords to an aggregated number. The second one is used to create a summary number by aggregating the aggregated numbers of all sellers. As a result, the comparison between the keywords of all sellers and those of one buyer can be achieved with only one calculation. Security analysis demonstrates that EMRQ can achieve confidentiality of keywords, authentication, data integrity and query privacy. Extensive experiments show that EMRQ is more efficient compared with the scheme in [3] in terms of computation and communication overhead.
유사 시퀀스 매칭에서는 고차원인 시퀀스를 저차원의 점으로 변환하기 위하여 저차원 변환을 사용한다. 그런데, 이러한 저차원 변환은 시계열 데이터의 종류에 따라 인덱싱 성능에 있어서 큰 차이를 나타낸다. 즉, 어떤 저차원 변환을 선택하느냐가 유사 시퀀스 매칭의 인덱싱 성능에 큰 영향을 주게 된다. 이 문제를 해결하기 위하여, 본 논문에서는 하나의 인덱스에서 두 개 이상의 저차원 변환을 통합하여 사용하는 하이브리드 접근법을 제안한다. 먼저, 하나의 시퀀스에 두 개 이상의 저차원 변환을 적용하는 하이브리드 저차원 변환의 개념을 제안하고, 변환된 시퀀스간의 거리를 계산하는 하이브리드 거리를 정의한다. 다음으로, 이러한 하이브리드 접근법 사용하면 유사 시퀀스 매칭을 정확하게 수행할 수 있음을 정형적으로 증명한다. 또한, 제안한 하이브리드 접근법을 사용하는 인덱스 구성 및 유사 시퀀스 매칭 알고리즘을 제시한다. 다양한 시계열 데이터에 대한 실험 결과, 제안한 하이브리드 접근법은 단일 저차원 변환을 사용하는 경우에 비해서 우수한 성능을 보이는 것으로 나타났다. 이 같은 결과를 볼 때, 제안한 하이브리드 접근법은 다양한 특성을 지닌 다양한 시계열 데이터에 두루 적용될 수 있는 우수한 방법이라 사료된다.
본 논문은 권투 모션 인식에 대한 연구로서 게임이나, 애니메이션 등의 분야에 응용될 수 있다. 권투 모션의 인식을 위하여 주성분분석과 동적시간정합 알고리즘을 적용한 실험을 하여 비교 연구하였다. 주성분분석 이론은 인식하고자 하는 데이터의 차원을 축소하여 특정 벡터를 추출하여 비교하는 알고리즘이며, 동적시간정합은 두 순차적인 데이터의 유사성을 구하는 알고리즘이다. 모션 인식을 위해 두 상이한 알고리즘을 비교하여 성능을 고찰하고, 권투 모션을 구성하기 위해 만든 모션캡쳐 시스템을 소개한다. 구성된 권투 모션 데이터로부터 모션 그래프를 구성하고, 정규화 과정을 처리한 후, 각각 5명의 연기자의 모션에 대해 인식을 시도하여 실험을 통해 인식률 결과를 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.