• Title/Summary/Keyword: Multicriteria optimization

Search Result 18, Processing Time 0.035 seconds

Multicriteria shape design of an aerosol can

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis;Olivier, Beigneux
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.165-175
    • /
    • 2015
  • One of the current challenges in the domain of the multicriteria shape optimization is to reduce the calculation time required by conventional methods. The high computational cost is due to the high number of simulation or function calls required by these methods. Recently, several studies have been led to overcome this problem by integrating a metamodel in the overall optimization loop. In this paper, we perform a coupling between the Normal Boundary Intersection - NBI - algorithm with Radial Basis Function - RBF - metamodel in order to have a simple tool with a reasonable calculation time to solve multicriteria optimization problems. First, we apply our approach to academic test cases. Then, we validate our method against an industrial case, namely, shape optimization of the bottom of an aerosol can undergoing nonlinear elasto-plastic deformation. Then, in order to select solutions among the Pareto efficient ones, we use the same surrogate approach to implement a method to compute Nash and Kalai-Smorodinsky equilibria.

Multicriteria Optimization of Spindle Units

  • Lim Sang-Heon;Lee Choon-Man;Zverev Igor Aexeevich
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.57-62
    • /
    • 2006
  • The quality of precision spindle units (S/Us) running on rolling bearings depends strongly on their structural parameters, such as the configuration and geometry of the S/U elements and bearing preloads. When S/Us are designed, their parameters should be optimized to improve the performance characteristics. However, it is practically impossible to state perfectly a general criterion function for S/U quality. Therefore, we propose to use a multicriteria optimization based on the parameter space investigation (PSI) method We demonstrate the efficiency of the proposed method using the optimization results of high-speed S/Us.

Multicriteria shape design of a sheet contour in stamping

  • Oujebbour, Fatima-Zahra;Habbal, Abderrahmane;Ellaia, Rachid;Zhao, Ziheng
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.

Development of a Material Mixing Method for Topology Optimization of PCB Substrate (PCB판의 위상 최적화를 위한 재료혼합법의 개발)

  • Han, Seog-Young;Kim, Min-Sue;Hwang, Joon-Sung;Choi, Sang-Hyuk;Park, Jae-Yong;Lee, Byung-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • A material mixing method to obtain an optimal topology for a structure in a thermal environment was suggested. This method is based on Evolutionary Structural Optimization(ESO). The proposed material mixing method extends the ESO method to a mixing several materials for a structure in the multicriteria optimization of thermal flux and thermal stress. To do this, the multiobjective optimization technique was implemented. The overall efficiency of material usage was measured in terms of the combination of thermal stress levels and heat flux densities by using a combination strategy with weighting factors. Also, a smoothing scheme was implemented to suppress the checkerboard pattern in the procedure of topology optimization. It is concluded that ESO method with a smoothing scheme is effectively applied to topology optimization. Optimal topologies having multiple thermal criteria for a printed circuit board(PCB) substrate were presented to illustrate validity of the suggested material mixing method. It was found that the suggested method works very well for the multicriteria topology optimization.

Computational design of an automotive twist beam

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.215-225
    • /
    • 2016
  • In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive twist beam undergoing linear elastic deformation (Hooke's law). Indeed, for the design of this automotive part, there are some criteria to be considered as the rigidity (stiffness) and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI) algorithm coupling with a radial basis function (RBF) metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form deformation (FFD) technique for the generation of the 3D shapes of the automotive part studied during the optimization process.

Using Evolutionnary algorithms to Design Mobile Manipulators

  • Keigo, Watanabe;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.4-44
    • /
    • 2001
  • A new approach to design and control mobile manipulators is presented in this paper, associating genetic algorithm to multicriteria optimization to generate and value the robots according to the constraints and aims of the task. Then the first step of this approach is detailed, as topologies and configurations of manipulators that can assume position, trajectory, speed or force task are studied.

  • PDF

유전적 알고리듬을 이용한 최적 구조 설계

  • 김기화
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.34-38
    • /
    • 1994
  • 본 연구에서는 Genetic Algorithm을 사용하여 상기의 문제를 해결하고자 한다. 특히 다목적 함수 최적화에는 한 번의 최적화 계산으로 Pareto최적해 집합이 동시에 구해지는 새로운 방법인 MOGA(Multicriteria Optimization by Genetic Algorithm)을 개발하였다. 먼저 Genetic Alorithm의 기본 특성에 대해 살펴보고, 다양한 종류의 문제를 통해 Genetic Algorithm의 유용 성을 검토하였다.

  • PDF

An interactive multicriteria simulation optimization method

  • Shin, Wan-Seon;Boyle, Carolyn-R.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.117-126
    • /
    • 1992
  • This study proposes a new interactive multicriteria method for determining the best levels of the decision variables needed to optimize a stochastic computer simulation with multiple response variables. The method, called the Pairwise Comparison Stochastic Cutting Plane (PCSCP) method, combines good features from interactive multiple objective mathematical programming methods and response surface methodology. The major characteristics of the PCSCP algorithm are: (1) it interacts progressively with the decision maker (DM) to obtain his preferences, (2) it uses good experimental design to adequately explore the decision space while reducing the burden on the DM, and (3) it uses the preference information provided by the DM and the sampling error in the responses to reduce the decision space. This paper presents the basic concepts of the PCSCP method along with its performance for solving randomly selected test problems.

  • PDF

Generation and Evaluation of Structural Design Alternatives Using Multicriteria Optimization (다목적 최적화 방법을 이용한 구조설계 대안의 생성과 평가)

  • 양영순;유원선;김기화
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.199-209
    • /
    • 1998
  • Since most engineering problems have had open-ended and ill-defined characteristics, design process is in advance attended with determination of alternatives based on realistic constraints after definition of appropriate problem. And it is completed with selection of best alternative through their comparison and investigation, and with performance of selected-alternative's detail design. As the process of structural design compared with that of general design, this paper presents a paradigm which can generate structural design alternatives, select optimum structure among them and simultaneously set its optimum design variables in reference of several objective as a result in more extended design region. For this purpose, specialized genetic algorithms which can handle design alternatives and multicriteria problems is used.

  • PDF