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This study proposes a new interactive
multicriteria method for determining the best
levels of the decision variables needed to
optimize a stochastic computer simulation with
multiple response variables. The method, called
the Pairwise Comparison Stochastic Cutting Plane
(PCSCP) method, combines good features from
interactive multiple objective mathematical
programming methods and response surface
methodology. The major characteristics of the
PCSCP algorithm are: (1) it interacts
progressively with the decision maker (DM) to
obtain his preferences, (2) it wuses good
experimental design to adequately explore the
decision space while reducing the burden on the
DM, and (3) it uses the preference information
provided by the DM and the sampling error in the
responses to reduce the decision space. This
paper presents the basic concepts of the Pcscp
method along with its performance for solving
randomly selected test problems.
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I. INTRODUCTION

Although simulation research is often presented
in textbooks as a collection of isolated self-
contained simulation experiments, in reality it is
more often an iterative process consisting of
formulating a research question (hypothesis),
designing and conducting a simulation experiment to
test the hypothesis, analyzing the results of the
experiment, and deciding if the hypothesis is
supported, if it needs to be reformulated, or if
further experimentation is needed. This paradigm is
particularly evident in simulation optimization
experiments, where the objective of the research is
to determine those values of the decision variables
that will produce an optimal response. Such
research is typically conducted as a series of
simulation experiments, each one providing
information that is used in designing succeeding
ones. The process is terminated when the DM finds
those values of the decision variables that yield an
optimal or near optimal response.

Numerous approaches to the problem of
optimizing computer simulation experiments have been
proposed as evidenced in the review articles that
have appeared on this subject [2]([10]. Most
research, however, has concentrated on single-
response optimization or situations where the
multiple responses can be combined in some way into
a single response [1]([3][14]. Although some
research has attempted to address directly the
multivariate nature of the multiple-response
optimization problem [5][6]([8], they fail to address
the importance of man-machine interaction during the
decision making process when multiple criteria are
involved. The motivation of this study is reflected
by the fact that many papers that propose
modifications or extensions of interactive
algorithms illustrate the new method by applying it
to real-world problems [11].

The primary objective of this research is to
develop a new interactive method for conducting
multiple-response simulation optimization
experiments. This research combines interactive
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methods from multiple objective mathematical
programming (MOMP), statistical and experimental
design techniques from response surface methodology
(RSM), and the special features of stochastic
simulation experiments. The goal of this research
is to develop an approach that: (1) interacts
progressively with the DM to obtain 1local
information about his preferences, (2) uses good
experimental design to adequately explore the
decision space while reducing the burden on the DM
by limiting the number of preference judgements
needed, and (3) uses the preference information
provided by the DM and the sampling error in the
response variables to reduce the decision space.

IT. MULTIPLE-RESPONSE COMPUTER SITMULATION
EXPERIMENTS

A simulation experiment can be regarded as a
mapping, called a response function, from the
decision space (input space) to the response space
(output space). Symbolically, this relationship can
be expressed as

nN= (£f,(x), £(x), .., £ (X))’
where

N is a k-dimensional true response vector,

X is an n-dimensional decision vector, and

f%, j =1, ..., k, are the response functions

ot x.

In general, not all values of the decision
variables are feasible or even of any interest to
the DM. Thus the experimental region will only be a
subset, X, of the decision space that takes the form

X={x| g;(x) <0, i=1, ..., m
where the g;(xX) are constraints on x.

In a stochastic simulation experiment, the
measurements of the response variables are subject

to random sampling error, i.e., the observed
response is
Yy=m+.e = (£,(x), £,(x), ..., £,(x))" +_¢€

where y is a k-dimensional observed response vector
and € is a k-dimensional vector of random sampling
errors.
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When there are multiple response functions, in
order to impose an ordering on the response vectors,
it is convenient to assume that the DM has a single-
valued unknown preference function. Using this
preference function, the DM can express preferences
among the response variables to determine his best
compromise solution.

Best Compromise Solution:
A decision vector x is the best compronise
solution if it is efficient and the response
vector, (f;(x), fuo(x), ..., fi(x))’, maximizes
the DM’s preference function.

Within this framework, the objective of the
multicriteria simulation optimization is to find the
best compromise solution.

In this study, a number of statistical or

functional assumptions were made. The assumptions
are:

1. Objective functions are concave.

2. System constraints are linear.

3. The computer model has already been developed

and validated and the DM is ready to perform
experiments using the model to make inferences
about the real system.

4. The individual components of the random
sampling error vector are each assumed to have
mean zero and Jjointly to have a variance-
covariance matrix Z.

5. The vectors of random sampling errors are
mutually statistically independent.
6. The vectors of random sampling errors have a

multivariate normal distribution.

III. THE PAIRWISE COMPARISON STOCHASTIC CUTTING
PILANE METHOD

It is evident that RSM, with its emphasis on
experimental design and <concern with random
variation in the responses, and MOMP, with its
emphasis on interactive techniques, can each be
profitably applied to computer simulation
optimization experiments. In this research, a new
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strategy, called the Pairwise Comparison Stochastic
Cutting Plane (PCSCP) method, is developed by
combining features of both techniques. The PCSCP
method consists of four stages:

1. Find the center of the current feasible region
in decision space.

2. Perform a designed experiment centered at that
point.

3. Determine the most preferred experimental point
by eliminating all the less preferred points.
This is accomplished by:

i) eliminating points that are dominated by
other experimental points,

ii) interacting with the DM using paired
comparison questions, and

iii) using a cutting plane based on the
estimated gradient of the preference
function in response space.

4. Reduce the feasible region in decision space by
formulating a new constraint based on the
estimated gradient of the preference function
at the most preferred experimental point.

In the first stage, the center of the current
feasible region in decision space is found using the
Modified Method of Centers as in the TCP algorithm
[7][12]. In the second stage, a designed experiment
is conducted at the center that will allow good
coverage of the experimental region and assessment
of random variation in the responses. Because the
designed experiment is necessarily performed at only
a finite number of points, in the third stage the
problem can be treated as a discrete MOMP. By
interacting with the DM, the best of these discrete
points can be found using a gradient-based approach
[4]. After asking the DM a series of paired
comparison questions, his preferences can be used to
estimate the 1local gradient of the preference
function in response space at the current decision
point, taking into account the variation in the

observed responses. This gradient is used to
construct a cutting plane that may eliminate
additional less-preferred points. The process of

alternately interacting with the DM and eliminating
points with the cutting plane continues until the
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most preferred experimental point is found. 1In the
fourth stage, the problem is again considered as
continuous. The estimated gradient at the most
preferred experimental point is used to reduce the
feasible region.

The detailed explanation of the method and
illustration with a numerical example are referred
to Shin and Carolyn [13].

IV. COMPUTATIONAL STUDY WITH THE PCSCP METHOD

In order to evaluate the performance of the
PCSCP algorithm, ten problems selected from the
literature [9] were tested under various conditions.
Six evaluation criteria were used to assess the
effectiveness of the method and they are: Number of
iterations(NIT), Total number of questions (TQUEST),
Number of gquestions per iteration (NQUEST) ,
Proportion of increments, Average preference
difference, and Difference from the theoretical
optimum.

Analysis of Correlation and the size of experimental
region

To investigate the impact of the 1level of
correlation among the elements of the response
vector and the size of experimental region on the
performance of the PCSCP method, the test problems
were solved under a number of conditions. These
conditions included five levels of correlation among
the elements of the response vector (0, 0.25, 0.50,
0.75, 0.90), four sizes of experimental region
(100%, 75%, 50%, or 25% of the distance to the
nearest constraint), and two estimation rules for
calculating local gradients (calculation after the
first round of comparisons or calculation after
determining the best point in the current
experiment). Each of ten test problems were solved
five times, using independent random number streams,
and the results on each of the evaluation criteria
were averaged over the five repetitions. The
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computational results of this analysis can be found
in Shin and Carolyn [13].

From this computational study, the following
appear to be characteristics of the algorithm:

1. Positive correlation among the responses does
- not appreciably affect performance.
2. Larger experimental regions improve
performance.
3. The rule for estimating local gradients does
not appreciably affect performance.
4. The default criterion for termination based on

the radius of the experimental region is
probably too large.

Although TQUEST and NQUEST appear to be reduced
in the presence of high positive correlation between
the responses, the amount of correlation is
generally unknown for a given simulation experiment.
Zero correlation seems to represent the worst case
situation.

Because there is not much difference between
the two rules for estimating local gradients, the
second rule is preferable because it reduces the
number of interactions with the DM and of nonlinear
programming problems that must be solved.

Analysis of Variation and Replications

The same ten test problems were tested under
another 40 sets of conditions, using zero
correlation, using the maximum size for the
experimental region, and estimating local gradients
after the first round of questioning. The new
conditions included five levels of variation in the
elements of the response vector (1.00, 0.05, 0.10,
0.05, 0.01), four numbers of replications at the
comparison points (1, 3, 5, or 7 replications), and
two stopping rules (stopping if the radius of the
design region is less than 1 or stopping after 20
iterations). The computational results are referred
to Shin and Carolyn [13].
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This additional computational study of the
algorithm suggests the following characteristics:

1. Moderate to low variation in the responses does
not appreciably affect performance.

2. Greater replication at the comparison points
may improve performance if the responses vary
greatly.

3. Using stopping rule 1 increases the proportion

of iterations in which the utility was improved
from the previous iteration.

4. Using stopping rule 2 decreases the average
difference from the optimum, but the total
number of questions becomes unacceptably large.

Because the amount of variation in the
responses is generally unknown for a given
simulation experiment, a modification of the
algorithm might involve using the variances
calculated from the first experiment to decide on
the number of replications at the comparison points.
The stopping rule based on the radius of the design
space is better than the stopping rule based only on
the number of iterations. The default radius could
be reduced to increase the precision of the estimate
of the optimum. The total number of iterations
should be limited to about 5 iterations so that the
number of interactions with the DM does not become
excessive.

V. CONCLUSION

This research developed a new interactive
multicriteria method for determining the best levels
of the decision variables needed to optimize a
stochastic computer simulation with multiple
response variables. The PCSCP method combines good
features of interactive methods developed for MOMP
problenms and response surface methodologies.
Initial computational studies verify the validity of
the method and its robustness in solving problems
under various situations.
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