• Title/Summary/Keyword: Multicomponent Reaction

Search Result 42, Processing Time 0.019 seconds

Efficient Synthesis of β-Acetamido Ketones by Silver(I) Triflate-Catalyzed Multicomponent Reactions

  • Pandit, Rameshwar Prasad;Lee, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3559-3564
    • /
    • 2012
  • An efficient one-pot synthesis of ${\beta}$-acetamido ketones was accomplished by AgOTf-catalyzed multicomponent reactions of substituted acetophenones with aromatic aldehydes and acid chloride in acetonitrile in high yields. The methods offer several significant advantages of easy handling, mild reaction conditions, and use of effective and non-toxic catalyst.

Charge/Discharge Mechanism of Multicomponent Olivine Cathode for Lithium Rechargeable Batteries

  • Park, Young-Uk;Shakoor, R.A.;Park, Kyu-Young;Kang, Ki-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • Quasi-equilibrium profiles are analyzed through galvanostatic intermittent titration technique (GITT) and potentiostatic intermittent titration technique (PITT) to study the charge/discharge mechanism in multicomponent olivine structure ($LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$). From GITT data, the degree of polarization is evaluated for the three regions corresponding to the redox couples of $Mn^{2+}/Mn^{3+}$, $Fe^{2+}/Fe^{3+}$ and $Co^{2+}/Co^{3+}$. From PITT data, the current vs. time responses are examined in each titration step to find out the mode of lithium de-intercalation/intercalation process. Furthermore, lithium diffusivities at specific compositions (x in $Li_xMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$) are also calculated. Finally, total capacity ($Q^{total}$) and diffusional capacity ($Q^{diff}$) are obtained for some selected voltage steps. The entire study consistently confirms that the charge/discharge mechanism of multicomponent olivine cathode is associated with a one-phase reaction rather than a biphasic reaction.

Correlation between rare earth elements in the chemical interactions of HT9 cladding

  • Lee, Eun Byul;Lee, Byoung Oon;Shim, Woo-Yong;Kim, Jun Hwan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.915-922
    • /
    • 2018
  • Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.

An Efficient Synthesis of α-Amino-δ-valerolactones by the Ugi Five-Center Three-Component Reaction

  • Kim, Young-Bae;Park, Soo-Jung;Geum, Gyo-Chang;Jang, Min-Seok;Kang, Soon-Bang;Lee, Duck-Hyung;Kim, You-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1277-1320
    • /
    • 2002
  • A novel approach to ${\alpha}-amino-{\delta}-valerolactone$ derivatives 8 by the intramolecular Ugi five-center three-component reaction (U-5C-3CR) using the multifunctional starting material, L-pentahomoserine 5 is described.

Quantitative Analysis of High-Temperature Mullitization from a Multicomponent Oxide System (다성분 산화물 요업체의 고온 물라이트화 반응 정량분석)

  • Shin, Hyun-Ho;Kim, Chool-Soo;Kim, Chang-Wook;Chang, Soon-Nam;Sung, Wan;Chang, Dong-Hwan;Kang, Suk-Won;Choi, Suk-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.5-10
    • /
    • 1998
  • Mullitization in a multicomponent oxide system(alumina-kaolin-quartz-feldspar-talc) was studied as a function of sintering temperature from 1200 to 1500$^{\circ}C$ based upon a quantitative X-ray diffraction analysis. In the present study mullite grew as wiskers and its formation reaction showed characteristic there stages as follows In the first stage(1255-1295$^{\circ}C$) an appreciable mullitization(nucleation) occurred while corun-dum dissolution into glass (increasing glass content ) limited the rate of the reaction. At 1295-1335$^{\circ}C$ (second state) the reaction was significantly enhanced with a considerable glass consumption and with no appreciable change in corundum content. Finally (above 1335$^{\circ}C$) the reaction rate was attenuated re-markably with an apparent decrease in glass consumption rate. The impingement of mullite whiskers by oth-er whiskers and crystals was speculated to cause mullite growth in thickness direction with a slow growth rate resulting in the diminished reaction rate in the final stage.

  • PDF

NOx Formation Characteristics in Diffusion, Partial Premixed and Premixed Jet flame (가스 연료의 연소 방식에 따른 NOx 생성 특성)

  • Choi, Young-Ho;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.155-164
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymetric 2-D CH4 jet diffusion, partial premixed, premixed flame. Calculations were carried out twice with C2-Full Mechanism including prompt NO reaction in addition to the above C2-Thermal NO Mechanism. The role of thermal NO mechanism and prompt NO mechanism on each flame's NO production is investigated by using the numerical result. The NOx production of each flame were evaluated Quantitatively in terms of the NOx emission index

  • PDF

Product Phase Control During Interdiffusion Reactions (상호 확산 반응 중의 생성상 제어)

  • Park, Joon-Sik;Kim, Ji-Hoon;Perepezko, John R.
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Phase evolutions involving nucleation stages together with diffusional growth have been examined in order to provide a guideline for determining rate limiting stages during phase evolutions. In multiphase materials systems in coatings, composites or multilayered structures, diffusion treatments often result in the development of metastable/intermediate phases at the reaction interfaces. The development of metastable phases during solid state interdiffusion demonstrates that the nucleation reaction can be one controlling factor. Also, the concentration gradient and the relative magnitudes of the component diffusivities provide a basis for a phase selection and the application of a kinetic bias strategy in the phase selection. For multicomponent alloy systems, the identification of the operative diffusion pathway is central to control phase formation. Experimental access to the nucleation and growth stage is discussed in thin film multi layers and bulk samples.