• Title/Summary/Keyword: Multichannel nonnegative matrix factorization

Search Result 4, Processing Time 0.019 seconds

A study on the target detection method of the continuous-wave active sonar in reverberation based on beamspace-domain multichannel nonnegative matrix factorization (빔공간 다채널 비음수 행렬 분해에 기초한 잔향에서의 지속파 능동 소나 표적 탐지 기법에 대한 연구)

  • Lee, Seokjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.489-498
    • /
    • 2018
  • In this paper, a target detection method based on beamspace-domain multichannel nonnegative matrix factorization is studied when an echo of continuous-wave ping is received from a low-Doppler target in reverberant environment. If the receiver of the continuous-wave active sonar moves, the frequency range of the reverberation is broadened due to the Doppler effect, so the low-Doppler target echo is interfered by the reverberation in this case. The developed algorithm analyzes the multichannel spectrogram of the received signal into frequency bases, time bases, and beamformer gains using the beamspace-domain multichannel nonnnegative matrix factorization, then the algorithm estimates the frequency, time, and bearing of target echo by choosing a proper basis. To analyze the performance of the developed algorithm, simulations were performed in various signal-to-reverberation conditions. The results show that the proposed algorithm can estimate the frequency, time, and bearing, but the performance was degraded in the low signal-to-reverberation condition. It is expected that modifying the selection algorithm of the target echo basis can enhance the performance according to the simulation results.

Online Monaural Ambient Sound Extraction based on Nonnegative Matrix Factorization Method for Audio Contents (오디오 컨텐츠를 위한 비음수 행렬 분해 기법 기반의 실시간 단일채널 배경 잡음 추출 기법)

  • Lee, Seokjin
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.819-825
    • /
    • 2014
  • In this paper, monaural ambient component extraction algorithm based on nonnegative matrix factorization (NMF) is described. The ambience component extraction algorithm in this paper is developed for audio upmixing system; Recent researches have shown that they can enhance listener envelopment if the extracted ambient signal is applied into the multichannel audio upmixing system. However, the conventional method stores all of the audio signal and processes all at once, so it cannot be applied to streaming system and digital signal processor (DSP) system. In this paper, the ambient component extraction algorithm based on on-line nonnegative matrix factorization is developed and evaluated to solve the problem. As a result of analysis of the processed signal with spectral flatness measures in the experiment, it was shown that the developed system can extract the ambient signal similarly with the conventional batch process system.

Target detection method of the narrow-band continuous-wave active sonar based on basis-group beamspace-domain nonnegative matrix factorization for a reverberant environment (잔향 환경을 위한 기저집단 빔공간 비음수 행렬 분해 기반의 협대역 지속파 능동 소나 표적 탐지 기법)

  • Lee, Seokjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.290-301
    • /
    • 2019
  • The proposed algorithm deals with a detection problem of target echo for narrow-band continuous-wave active sonar in the underwater environment in this paper. In the active sonar systems, ping signal emitted for target detection produces a signal that consists of multiple reflections by many scatterers around, which is called reverberation. The proposed algorithm aims to detect the low-Doppler target echo in the reverberant environment. The proposed algorithm estimates the bearing, frequency, and temporal bases based on beamspace-domain multichannel nonnegative matrix factorization. In particular, the bases are divided into two basis groups - the reverberation group and the echo group, then the basis groups are estimated independently. In order to evaluate the proposed algorithm, a simulation with synthesized reverberation was performed. The results show that the proposed algorithm has enhanced performance than the conventional algorithms.

Underdetermined blind source separation using normalized spatial covariance matrix and multichannel nonnegative matrix factorization (멀티채널 비음수 행렬분해와 정규화된 공간 공분산 행렬을 이용한 미결정 블라인드 소스 분리)

  • Oh, Son-Mook;Kim, Jung-Han
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.120-130
    • /
    • 2020
  • This paper solves the problem in underdetermined convolutive mixture by improving the disadvantages of the multichannel nonnegative matrix factorization technique widely used in blind source separation. In conventional researches based on Spatial Covariance Matrix (SCM), each element composed of values such as power gain of single channel and correlation tends to degrade the quality of the separated sources due to high variance. In this paper, level and frequency normalization is performed to effectively cluster the estimated sources. Therefore, we propose a novel SCM and an effective distance function for cluster pairs. In this paper, the proposed SCM is used for the initialization of the spatial model and used for hierarchical agglomerative clustering in the bottom-up approach. The proposed algorithm was experimented using the 'Signal Separation Evaluation Campaign 2008 development dataset'. As a result, the improvement in most of the performance indicators was confirmed by utilizing the 'Blind Source Separation Eval toolbox', an objective source separation quality verification tool, and especially the performance superiority of the typical SDR of 1 dB to 3.5 dB was verified.